版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、新人教版初三数学反比例函数知识点和例题 (一)反比例函数的概念 1()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时 应特别注意系数 这一限制条件; 2()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的 解析式; 3反比例函数的自变量,故函数图象与x轴、y轴无交点 (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称) (三)反比例函数及其图象的性质 1函数解析式:() 2自变量的取值范围: 3图象: (1)图象的形状:双曲线 越大,图象的弯曲度越小,曲线越平直 越小,
2、图象的弯曲度越大 (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大 当 ,)在双曲线的另一支上 (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则( 图象关于直线)和(,)在双曲线的另一支上, )在双曲线的一支上,则(b,a对称,即若( 的几何意义k4 如图1,设点P(a,b)是双曲线上任意一点,作PAx轴于A点,PBy轴于B点,则矩形PBOA的面积是 (三角形PAO和三角形PBO的面积都是) 如图2,由双曲线的对称
3、性可知,P关于原点的对称点Q也在双曲线上,作QCPA的延长线于C,则有三角形PQC 的面积为 图2 图1 5说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个 分支分别讨论,不能一概而论 (2)直线与双曲线的关系: 时,两图象必有两个交点,且这两个交点关于原点成中心对称 时,两图象没有交点;当当 (3)反比例函数与一次函数的联系 (四)实际问题与反比例函数 1求函数解析式的方法: (1)待定系数法;(2)根据实际意义列函数解析式 2注意学科间知识的综合,但重点放在对数学知识的研究上 三、例题分析 1反比例函数的概念 (1)下列函数中,y是x的反比例函数的是( ) Ay=
4、3x B C3xy=1 D (2)下列函数中,y是x的反比例函数的是( ) A B C D 2 图象和性质 是反比例函数, (1)已知函数 若它的图象在第二、四象限内,那么k=_ 若y随x的增大而减小,那么k=_ (2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第_象限 (3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_象限 (4)已知ab0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是( ) A第一象限 B第二象限 C第三象限 D第四象限 (5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过( ) A第
5、一、二、三象限 B第一、二、四象限 C第一、三、四象限 D第二、三、四象限 (6)已知函数和(k0),它们在同一坐标系内的图象大致是( ) D C A B 函数的增减性3 (1)在反比例函数的图象上有两点,且,则的值为( ) A正数 B负数 C非正数 D非负数 (2)在函数(a为常数)的图象上有三个点,则函数值、的 大小关系是( ) B C AD (3)下列四个函数中:; y随x的增大而减小的函数有( ) A0个 B1个 C2个 D3个 (4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x0时,这个反比例函数的函数值y随x的增大而 (填“增大”或“减小”) 4解析式的确定
6、 (1)若与成反比例,与成正比例,则y是z的( ) A正比例函数 B反比例函数 C一次函数 D不能确定 (2)若正比例函数y=2x与反比例函数的图象有一个交点为 (2,m),则m=_,k=_,它们的另 _一个交点为 (3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值 (4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3) 的值;求一次函数和反比例函数的解析式x 0求 (5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒 已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x成反比例(如
7、图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克 请根据题中所提供的信息解答下列问题: 药物燃烧时y关于x的函数关系式为_,自变量x 的取值范围是_;药物燃烧后y关于x的函数关系式为_ 研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_分钟后,学生才能回到教室; 研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么? 5面积计算 轴作垂线,过每一点所作的两条y轴、x,过这三个点分别向C、B、A的图象上有三个点)如图,在函数1( 垂线段与x轴、y轴围成
8、的矩形的面积分别为、,则( ) D A BC 第(1)题图 第(2)题图 (2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC/y轴,BC/x轴,ABC的面积S,则( ) AS=1 B1S2 CS=2 DS2 (3)如图,RtAOB的顶点A在双曲线上,且SAOB=3,求m的值 第(3)题图 第(4)题图 (4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R
9、 2的周长,并比较它们的大小 (5)如图,正比例函数y=kx(k0)和反比例函数,B轴于x轴垂线交x作A两点,过C、A的图象相交于 S=_,则S面积为ABC,若BC连接 第(5)题图 第(6)题图 (6)如图在RtABO中,顶点A是双曲线与直线在第四象限的交点,ABx轴于B且 SABO= 求这两个函数的解析式; 求直线与双曲线的两个交点A、C的坐标和AOC的面积 (7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k 0,x0)的图象上,点P (m,n)是函数(k0,x0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在
10、正方形OABC以外的部分的面积为S 求B点坐标和k的值; 当时,求点P的坐标; 写出S关于m的函数关系式 6综合应用 (1)若函数y=k1x(k10)和函数(k2 0)在同一坐标系内的图象没有公共点,则k1和k2( ) 符号相反D 绝对值相等C 符号相同B 互为倒数A (2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n) 求反比例函数和一次函数的解析式; 根据图象写出使一次函数的值大于反比例函数的值的x的取值范围 (3)如图所示,已知一次函数(k0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1 求点A、B、D的坐标; 求一次函数和反比例函数的解析式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产xx其他照相设备器材项目建议书
- 年产xx幕墙玻璃项目可行性研究报告(项目说明)
- 2024年计算机系统服务项目资金申请报告代可行性研究报告
- 脑血管病取栓后护理
- 临床护理科室教学管理
- 小班主题活动教案《幼儿园托班第一周活动方案》
- 中班英语教案9篇
- 艾滋病主要传播途径
- 三年级数学上册学案- 3.3 吨的认识 -人教新课标
- 一年级数学下册教案-☆摆一摆想一想(29)-人教版
- IPD题库附有答案
- 小学家长会PPT完整版
- 小米手机营销商业计划书
- 《世界是永恒发展的》说课 教学设计
- 昆明天大矿业有限公司寻甸县金源磷矿老厂箐-小凹子矿段(拟设)采矿权出让收益评估报告
- 动火作业票(参考)
- 储料仓及掺混料仓制作安装施工方案
- 建筑公司组织关系架构图
- GB/T 5231-2001加工铜及铜合金化学成分和产品形状
- 《幼儿卫生学》配套教学课件
- 《网络操作系统(Windows Server 2008)》项目11、配置VPN服务器
评论
0/150
提交评论