数字电视行业概念解析_第1页
数字电视行业概念解析_第2页
数字电视行业概念解析_第3页
数字电视行业概念解析_第4页
数字电视行业概念解析_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、什么是D1?做闭路电视监控系统这一行久了,大家都以为D1是硬盘录像机显示、录像、回放的分辨率,实际上不是的,D1是数字电视系统显示格式的标准,共分为以下5种规格:D1:480i格式(525i):720480(水平480线,隔行扫描),和NTSC模拟电视清晰度相同,行频为15.25kHz,相当于我们所说的4CIF(720576)D2:480P格式(525p):720480(水平480线,逐行扫描),较D1隔行扫描要清晰不少,和逐行扫描DVD规格相同,行频为31.5kHzD3:1080i格式(1125i):19201080(水平1080线,隔行扫描),高清方式采用最多的一种分辨率,分辨率为1920

2、1080i/60Hz,行频为33.75kHzD4:720p格式(750p):1280720(水平720线,逐行扫描),虽然分辨率较D3要低,但是因为逐行扫描,市面上更多人感觉相对于1080I(实际逐次540线)视觉效果更加清晰。不过个人感觉来说,在最大分辨率达到19201080的情况下,D3要比D4感觉更加清晰,尤其是文字表现力上,分辨率为1280720p/60Hz,行频为45kHzD5:1080p格式(1125p):19201080(水平1080线,逐行扫描),目前民用高清视频的最高标准,分辨率为19201080P/60Hz,行频为67.5KHZ。其中D1 和D2标准是我们一般模拟电视的最高

3、标准,并不能称的上高清晰,D3的1080i标准是高清晰电视的基本标准,它可以兼容720p格式,而D5的1080P只是专业上的标准。SIF(Standard Image Format)NTSC制是350*240象素,PAL制是352*288象素。MPEG-1压缩标准支持SIF图像尺寸。SIF通常用于短距离传输。中文名SIF NTSC制350*240象素 PAL制352*288象素 用途短距离传输 码率、帧率和分辨率为了了解视频的码率、帧率、分辨率。我们先来看看视频编码的基本原理:视频图像数据有极强的相关性,也就是说有大量的冗余信息。其中冗余信息可分为空域冗余信息和时域冗余信息。压缩技术就是将数据

4、中的冗余信息去掉(去除数据之间的相关性),压缩技术包含帧内图像数据压缩技术、帧间图像数据压缩技术和熵编码压缩技术。视频文件一般涉及到三个参数:帧率、分辨率和码率。 帧率:每秒显示的图片数。影响画面流畅度,与画面流畅度成正比:帧率越大,画面越流畅;帧率越小,画面越有跳动感。由于人类眼睛的特殊生理结构,如果所看画面之帧率高于16的时候,就会认为是连贯的,此现象称之为视觉暂留。并且当帧速达到一定数值后,再增长的话,人眼也不容易察觉到有明显的流畅度提升了。 分辨率:(矩形)图片的长度和宽度,即图片的尺寸 码率:把每秒显示的图片进行压缩后的数据量。影响体积,与体积成正比:码率越大,体积越大;码率越小,体

5、积越小。 (体积=码率时间) 帧率X分辨率=压缩前的每秒数据量(单位应该是若干个字节) 压缩比=压缩前的每秒数据量/码率 (对于同一个视频源并采用同一种视频编码算法,则:压缩比越高,画面质量越差。) 所谓“清晰”,是指画面十分细腻,没有马赛克。并不是分辨率越高图像就越清晰。 简单说: 在码率一定的情况下,分辨率与清晰度成反比关系:分辨率越高,图像越不清晰,分辨率越低,图像越清晰。 在分辨率一定的情况下,码率与清晰度成正比关系,码率越高,图像越清晰;码率越低,图像越不清晰。 但是,事实情况却不是这么简单。可以这么说: 在码率一定的情况下,分辨率在一定范围内取值都将是清晰的;同样地,在分辨率一定的

6、情况下,码率在一定范围内取值都将是清晰的。 在视频压缩的过程中, I帧是帧内图像数据压缩,是独立帧。而P帧则是参考I帧进行帧间图像数据压缩,不是独立帧。在压缩后的视频中绝大多数都是P帧,故视频质量主要由P帧表现出来。由于P帧不是独立帧,而只是保存了与邻近的I帧的差值,故实际上并不存在分辨率的概念,应该看成一个二进制差值序列。而该二进制序列在使用熵编码压缩技术时会使用量化参数进行有损压缩,视频的质量直接由量化参数决定,而量化参数会直接影响到压缩比和码率。 视频质量可以通过主观和客观方式来表现,主观方式就是通常人们提到的视频清晰度,而客观参数则是量化参数或者压缩比或者码率。在视频源一样,压缩算法也

7、一样的前提下比较,量化参数,压缩比和码率之间是有直接的比例关系的。 分辨率的变化又称为重新采样。由高分辨率变成低分辨率称为下采样,由于采样前数据充足,只需要尽量保留更多的信息量,一般可以获得相对较好的结果。而由低分辨率变成高分辨率称为上采样,由于需要插值等方法来补充(猜测)缺少的像素点,故必然会带有失真,这就是一种视频质量(清晰度)的损失。CAM 卡CAM卡,它是一种数字视频条件接收模块,是一个连接电视机与外部信号源的设备。它可以将压缩的数字信号转成电视内容,并在电视机上显示出来。CAM卡(亦称大卡)和智能卡(亦称小卡)配合使用,插入带有CI接口的数字电视一体机,使用户无需机顶盒直接收看所订购

8、的付费数字电视内容。FECFEC,也叫前向纠错(Forward Error Correction)。一些人会奇怪的问:FEC是什么?有什么用?既然数字机无需输入该参数,那么FEC有什么用?其实,在卫视接收的参数中,FEC是个非常重要的数据。在早期的数字机中,例如NOKIA9500是需要输入FEC参数的。只是后来的数字机的运算速度提高,可以自动测定FEC,而不需要用户自己输入FEC参数了。但是在数字节目解码过程中,FEC还是必不可少的一个重要参数。这就像今天运算速度更快的盲扫机器不用输入参数便可以接收节目一样,但是下行频率和符码率仍是最基本的节目数据。那么FEC到底有什么作用呢? 大家都知道,数

9、字节目和模拟节目比,效果更清晰,色彩更纯净,通透性更高,画面没有杂质干扰。这都要得益于数字信号出色的抗干扰能力。在数字信号中,为了防止外界信号干扰,保护信号不变异,要进行多重的纠错码设置。数字信号在解码过程中,对错误信号十分敏感,每秒钟只要有很小很小的误码,就无法正常解码。而数字卫星信号之所以能顺利播放,又是得益于数字信号中的纠错码的设置。在各种纠错码的设置中,被称做FEC的前向纠错是一个非常重要的防干扰算法。采用前向误差校正 FEC 方法,是为了降低数字信号的误码率,提高信号传输的可靠性。 我们知道,数字信号实际传送的是数据流,一般数据流包括以下三种: ES流:也叫基本码流,包含视频、音频或

10、数据的连续码流。 PES流:也叫打包的基本码流,是将基本码流ES流根据需要分成长度不等的数据包,并加上包头就形成了打包的基本码流PES流。 TS流:也叫传输流,是由固定长度为188字节的包组成,含有独立时基的一个或多个节目,适用于误码较多的环境。 为了能形象的、浅显易懂地说明,我们来打个比喻,如果把ES流比做产品的原材料,那么PES流就是工厂刚刚生产出来的一件产品,而TS流就是经过包装好送到商店柜台或用户手里的商品。如果ES流的重量被成为净重,那么TS流的重量就被称为毛重。读者会问,这个比喻和FEC又有何相干? 从PES流到TS流,这个过程中已经加进去FEC纠错码,可以采用不同的速率 FEC

11、rate ,在DVB-S标准中,规定5种速率1/2、2/3、3/4、5/6、7/8。以7/8为例,其实际意义是,在一个TS流中,只有7/8的内容是装有节目内容的PES流,而另外的1/8内容,则是用来保护数据流不发生变异的纠错码。还用上面的例子做比喻,如果整个节目的符码率是毛重的话,则7/8的节目内容好比是净重,而1/8的纠错码就是包装箱的重量。 那有一点是可以肯定的,FEC纠错率越低,则纠错码占据的比例越高,同样功率时,对解码的门限要求越低,要求天线口径越小,接收越容易;FEC越高,则纠错码越低,解码门限值越高,天线口径要求越大,接收越困难。到此,读者梁兴光的疑惑可以说是解开了,但是细心的读者

12、又会产生新的疑问:既然FEC纠错码率越低,门限越低,天线口径越小,越容易接收,为什么凤凰卫视和韩国阿里郎还要用7/8那么高的FEC码率呢?如果改用2/1的FEC,接收天线不是可以变的更小吗?这就涉及到FEC的另一个重要作用:如果纠错码过高,那么相应的节目内容占用的码率则更低,一方面降低节目画质,另一方面,如果不降低画质,则只能减少传送节目的数量了。比如梁先生提到的韩国阿里郎节目,符码率是4420,FEC是7/8;而亚洲2号各省节目的符码率也同样是4420,但是FEC则只有3/4,实际上这两个同样符码率的节目,画质并不相同,阿里郎的画质要比省台的高一些,原因是阿里郎的码流中,只拿出了8/1的码流

13、用来保护数据流不受干扰变化,而亚洲2号的各省台则要拿出比阿里郎多一倍的1/4的码流来保护数据流。但是任何事物都有其两面性,如果阿里郎和亚洲2号各省台的节目信号强度相同,亚洲2号的省台接收起来更容易。 在DVB-S标准中,只规定了1/2、2/3、3/4、5/6、7/8这5种FEC码率,为什么只规定这5种,为什么没有4/5和6/7?如果您自己考虑明白了,说明对FEC也就彻底搞清楚了。DVI目前在高清设备中,主要的接口有DVI、HDMI、VGA接口,其中VGA传输的是模拟视频信号,DVI传播的是数字视频信号,HDMI可以同时传输数字视频信号和数字音频信号。在现在的计算机和电视等设备中,我们经常可以看

14、到这三种接口,很多用户存在疑问,这三种接口之间有什么区别呢?DVI接口是在1999年推出的接口标准。DVI接口的传输信号采用全数字格式。DVI接口有多种规格,DVI一共分为5种标准。其中DVI-D和DVI-I分为“双通道”和“单通道”两种类型。VGA接口应用范围非常广泛,是三种接口中最先推出的标准,VGA接口,也叫D-Sub接口。虽然液晶显示器可以直接接收数字信号,但很多低端产品为了与VGA接口显卡相匹配,因而采用VGA接口。VGA接口是一种D型接口,上面共有15针空,分成三排,每排五个。VGA接口是显卡上应用最为广泛的接口类型,绝大多数的显卡都带有此种接口。HDMI,常被称作高清晰度多媒体接

15、口,是终结以往影音分离传输的全新接口,其最大传输速度可达5Gb/s,除影像数据外,更可同时传输高达8声道的音讯信号。这种非压缩式的数字数据传输,可有效降低数/类转换所造成的信号干扰与衰减。HDMI是首个支持在单线缆上传输,不经过压缩的全数字高清晰度、多声道音频和智能格式与控制命令数据的数字接口。HDMI源于DVI接口技术,它们主要是以美国晶像公司的TMDS信号传输技术为核心,这也就是为何HDMI接口和DVI接口能够通过转接头相互转换的原因。VGA和DVI的区别: VGA模拟信号的传输比较麻烦,首先是将电脑内的数字信号转换为模拟信号,将信号发送到LCD显示器,由显示器再将该模拟信号转换为数字信号

16、,形成画面展示在大家面前。正因为如此,中间的信号丢失严重,虽然可以通过软件的方法修复部分画面,但是随着显示器的分辨率越高画面就会越模糊。一般模拟信号在超过12801024分辨率以上的情况下就会出现明显的误差,分辨率越高越严重。但DVI接口考虑的对象是PC,对于笔记本、平板电视的兼容能力一般。另外DVI接口出于兼容性考虑,预留了不少引脚以支持模拟设备,造成接口体积较大,效率很低DVI与HDMI区别1、新增了对新型无损压缩数字音频格式Dolby TrueHD和DTS-HD Master Audio的支持。2、更高的刷新率:在同样1920x1080分辨率的模式下,HDMI1.3提供165Hz刷新率比

17、双通道DVI接口的120Hz刷新率更高。3、以太网络通道:HDMI规格1.4在缆线中增加了数据通路, 来达成双向高速的传送。有此功能的设备在连结后,将可用以太线100Mb/秒的速度发送和接收数据, 并使这些设备立即成为IP基础的设备。HDMI以太网络通道可让集成互联网功能的HDMI设备,无需使用其他以太网络线缆,即可与其他HDMI设备共享其互联网连线。此一新功能同时也提供HDMI设备间共享内容所需的互连架构。4、更高的分辨率:支持38402160 24Hz/25Hz/30Hz;40962160 24Hz分辨率。新规格支持40962160分辨率,使得HDMI界面得以用许多数字影院所采用的同等标准

18、分辨率的内容传输。而双通道DVI接口只能支持到2560x1600分辨率。ISDB-T日本采用的地面传输制式不限于单独传输数字电视(图像和伴音),也包括了独立的声音和数据广播,这几者可以单独存在或任意地组合,构成在带宽6MHz内的一路节目或多路节目。ISDB-T系统包括发送部分和接收部分,发送部分的输入是信源编码部分的输出,发送部分的输出是加给发射机输入端的中频已调制信号,在发射机内上变频成射频信号去往馈线和天线。ISDB-T在信源编码中,图像信号也按MPEG-2的压缩标准。根据Rec.ITU-RBT.601-5,对于SDTV,图像源格式应是720(704)480像素数,取样频率为4:2:0模式

19、。至于声音信号的信源编码,日本既未采用MPEG-2的压缩标准(ISO/IEC13818-3),即所谓的MUSICAM(掩蔽型通用子带综合编码和复用),也未采用ATSC中的DolbyAC-3(音频编码-3)标准,而是采用基于MPEG-4的AAC(高级AC)压缩方式。ISDB-T系统中的接收部分,输入信号是COFDM调制的射频信号,输出信号是加给信源解码部分输入端的信道解码信号。图1中简要示明了系统框图。传送带宽为了与地面电视广播的原频道规划(每频道6MHz)相适配,ISDB-T中每个频道的传送带宽为(432KHz13+4KHz)=5.62MHz或(432KHz13+1KHz)=5.617MHz。

20、这里,是以每432KHz作为一个独立的OFDM(正交频分复用),6MHz内可包含13段OFDM。而每个OFDM段由数据段和导频信号组成,或者说OFDM段是指在数据段中加入各种导频信号后于432KHz带宽内传送的信息数据流。每个数据段可以独立地指定其载波调制方式(16QAM、64QAM、QPSK或DQPSK)、内码编码率(1/2、2/3、3/4、5/6、或7/8)、保护间隔比和时间交织深度等。作为对比,欧洲DVB-T8MHz或7MHz的每路频道是作为一个总体来处理的,对全部载波的调制方式只能是一种(16QAM、64QAM或QPSK),内码编码率基本上是一种(1/2、2/3、3/4、5/6、或7/

21、8),保护间隔比也只能是一种(1/4、1/8、1/16或1/32)。由此可见,ISDB-T在这些方面其信号处理与DVB-T基本上相同,但是更灵活些,可按电视、声音、数据的不同需求优化地选用。AAC与AC3比较AC-3采用6只喇叭模式,除了超重低音部分外,其馀皆是全频段Stereo声道,48KHz,16bit,且现场拍摄时每个声道皆是独立麦克风来录制,所以AC-3的后环绕声道拥有完整的定位能力。AC-3资料的流量,两声道是192Kbps,大约是未压缩资料的8分之一大小,5.1声道的流量是384Kbps448Kbps,最高可提升到640Kbps,越大的资料流量代表越小的压缩比例,音质相对的会更好,

22、可听到的细节也会多,但Dolby AC-3将S/N比控制的很好,所以影响的重点就是可听到的细节多寡与否了 AAC(Advanced Audio Coding)实际上是高级音频编码的缩写,AAC是由Fraunhofer IIS-A、杜比和AT&T共同开发的一种音频格式,它是MPEG-2规范的一部分。AAC所采用的运算法则与MP3的运算法则有所不同,AAC通过结合其他的功能来提高编码效率。AAC的音频算法在压缩能力上远远超过了以前的一些压缩算法(比如MP3等)。它还同时支持多达48个音轨、15个低频音轨、更多种采样率和比特率、多种语言的兼容能力、更高的解码效率。总之,AAC可以在比MP3文件缩小3

23、0%的前提下提供更好的音质,被手机界称为“21世纪数据压缩方式”。 因为“AAC”是一个大家族,他们是共分为9种规格,以适应不同场合的需要: a) MPEG-2 AAC LC 低复杂度规格 (Low Complexity) b) MPEG-2 AAC Main 主规格 c) MPEG-2 AAC SSR 可变取样率规格 (Scaleable Sample Rate) d) MPEG-4 AAC LC 低复杂度规格(Low Complexity),现在的手机比较常见的MP4文件中的音频部份就包括了该规格音频文件 e) MPEG-4 AAC Main 主规格 f) MPEG-4 AAC SSR 可

24、变取样率规格 (Scaleable Sample Rate) g) MPEG-4 AAC LTP 长时期预测规格(Long Term Predicition) h) MPEG-4 AAC LD 低延迟规格(Low Delay) i) MPEG-4 AAC HE 高效率规格(High Efficiency) 上述的规格中,主规格“Main”包含了除增益控制之外的全部功能,其音质是最好,而低复杂度规格则是比较简单,没有了增益控制,但提高了编码效率,至“SSR”对“LC”规格大体是相同,但是多了增益的控制功能,另外,MPEG-4/AAC/LTP/LD/HE,都是用在低码率下编码,特别是“HE”是有N

25、ero ACC编码器支持,是近来多用的一种编码率种,不过通常来说,Main规格和LC规格的音质相差是不大,因此目前使用最多的AAC规格多数是“LC”规格,因为要考虑手机目前的内存能力未达合理水平。DRADRA 是Digital Rise Audio的缩写。是广州广晟数码技术有限公司(Digital Rise Technology)开发的一项数字音频编码技术,目前是音频编码的国家标准。2007年1月被批准成为中国电子行业标准(标准号SJ/T11368-2006)。DRA音频标准可应用于数字电视、数字音频广播、数字电影院、激光视盘机、网络流媒体、IPTV及移动多媒体等领域。DRM 英文全称Digi

26、tal Rights Management, 可以翻译为:数字版权管理。 由于数字化信息的特点决定了必须有另一种独特的技术,来加强保护这些数字化的音视频节目内容的版权,该技术就是数字权限管理技术-DRM(digital right management)。DRM保护技术使用以后可以控制和限制这些数字化媒体内容的使用权。数字版权管理(Digital Rights Management,DRM)是随着电子音频视频节目在互联网上的广泛传播而发展起来的一种新技术。其目的是保护数字媒体的版权,从技术上防止数字媒体的非法复制,或者在一定程度上使复制很困难,最终用户必须得到授权后才能使用数字媒体。DRM技术

27、的工作原理是,首先建立数字节目授权中心。编码压缩后的数字节目内容,可以利用密钥(Key)进行加密保护(lock),加密的数字节目头部存放着KeyID和节目授权中心的URL。用户在点播时,根据节目头部的KeyID和URL信息,就可以通过数字节目授权中心的验证授权后送出相关的密钥解密(unlock),节目方可播放。需要保护的节目被加密,即使被用户下载保存,没有得到数字节目授权中心的验证授权也无法播放,从而严密地保护了节目的版权。密钥一般有两把,一把公钥(public key),一把私钥(private key)。公钥用于加密节目内容本身,私钥用于解密节目,私钥还可以防止当节目头部有被改动或破坏的情况,利用密钥就可以判断出来,从而阻止节目被非法使用。 上述这种加密的方法,有一个明显的缺陷,就是当解密的密钥在发送给用户时,一旦被黑客获得密钥,即可方便解密节目,从而不能真正确保节目内容提供商的实际版权利益。另一种更加安全的加密方法是使用三把密钥,即把密钥分成两把,一把存放在用户的Pc机上,另一把放在验证站(access ticket)。要解密数字节目,必须同时具备这两把密钥,方能解开数字节目。毫无疑问,加密保护技术在开发电子商务系统中正起着重要的防盗版作用。比如,在互联网上传输音乐或视频节目等内容,这些内容很容易被拷贝复制。为了避免这些风险,节目内容

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论