版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、题型七:弦或弦长为定值问题例题9、(07湖北理科)在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p0)相交于A、B两点。()若点N是点C关于坐标原点O的对称点,求ANB面积的最小值;()是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由。(此题不要求在答题卡上画图)本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:()依题意,点N的坐标为N(0,-p),可设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+p,与x2=2py联立
2、得消去y得x2-2pkx-2p2=0.由韦达定理得x1+x2=2pk,x1x2=-2p2.于是.()假设满足条件的直线l存在,其方程为y=a,AC的中点为径的圆相交于点P、Q,PQ的中点为H,则.=令,得为定值,故满足条件的直线l存在,其方程为,即抛物线的通径所在的直线.解法2:()前同解法1,再由弦长公式得又由点到直线的距离公式得.从而,()假设满足条件的直线t存在,其方程为y=a,则以AC为直径的圆的方程为将直线方程y=a代入得设直线l与以AC为直径的圆的交点为P(x2,y2),Q(x4,y4),则有令为定值,故满足条件的直线l存在,其方程为.即抛物线的通径所在的直线。练习、(山东09理)
3、(22)(本小题满分14分)设椭圆E: (a,b0)过M(2,) ,N(,1)两点,O为坐标原点,(I)求椭圆E的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。解:(1)因为椭圆E: (a,b0)过M(2,) ,N(,1)两点,所以解得所以椭圆E的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即,则=,即,要使,需使,即,所以,所以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,所求
4、的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.因为,所以, 当时因为所以,所以,所以当且仅当时取”=”. 当时,. 当AB的斜率不存在时, 两个交点为或,所以此时,综上, |AB |的取值范围为即: 【命题立意】:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系.题型八:角度问题例题9、(08重庆理)如图(21)图,M(-2,0)和N(2,0)是
5、平面上的两点,动点P满足:()求点P的轨迹方程;()若,求点P的坐标.解:()由椭圆的定义,点P的轨迹是以M、N为焦点,长轴长2a=6的椭圆. 因此半焦距c=2,长半轴a=3,从而短半轴b=, 所以椭圆的方程为 ()由得 因为不为椭圆长轴顶点,故P、M、N构成三角形.在PMN中, 将代入,得 故点P在以M、N为焦点,实轴长为的双曲线上. 由()知,点P的坐标又满足,所以 由方程组 解得 即P点坐标为练习1、(05福建理)已知方向向量为v=(1,)的直线l过点(0,2)和椭圆C:(ab0)的焦点,且椭圆C的中心关于直线l的对称点在椭圆C的右准线上.()求椭圆C的方程;()是否存在过点E(2,0)
6、的直线m交椭圆C于点M、N,满足cotMON0(O为原点).若存在,求直线m的方程;若不存在,请说明理由.本小题主要考查直线、椭圆及平面向量的基本知识,平面解析几何的基本方法和综合解题能力.满分14分.(I)解法一:直线, 过原点垂直的直线方程为, 解得椭圆中心O(0,0)关于直线的对称点在椭圆C的右准线上,直线过椭圆焦点,该焦点坐标为(2,0). 故椭圆C的方程为 解法二:直线.设原点关于直线对称点为(p,q),则解得p=3.椭圆中心O(0,0)关于直线的对称点在椭圆C的右准线上, 直线过椭圆焦点,该焦点坐标为(2,0). 故椭圆C的方程为 (II)解法一:设M(),N().当直线m不垂直轴
7、时,直线代入,整理得 点O到直线MN的距离即 即整理得当直线m垂直x轴时,也满足.故直线m的方程为或或经检验上述直线均满足.所以所求直线方程为或或解法二:设M(),N().当直线m不垂直轴时,直线m:y=k(x+2)代入,整理得 E(2,0)是椭圆C的左焦点,|MN|=|ME|+|NE|=以下与解法一相同.解法三:设M(),N().设直线,代入,整理得 |y1-y2|=即 =,整理得解得或故直线m的方程为或或经检验上述直线方程为所以所求直线方程为或或练习2、(07四川理)设、分别是椭圆的左、右焦点。()若是该椭圆上的一个动点,求的最大值和最小值;()设过定点的直线与椭圆交于不同的两点、,且为锐
8、角(其中为坐标原点),求直线的斜率的取值范围。本题主要考察直线、椭圆、平面向量的数量积等基础知识,以及综合应用数学知识解决问题及推理计算能力。解:()解法一:易知所以,设,则因为,故当,即点为椭圆短轴端点时,有最小值当,即点为椭圆长轴端点时,有最大值解法二:易知,所以,设,则(以下同解法一)()显然直线不满足题设条件,可设直线,联立,消去,整理得:由得:或又又,即 故由、得或练习3、(08陕西理)已知抛物线:,直线交于两点,是线段的中点,过作轴的垂线交于点()证明:抛物线在点处的切线与平行;()是否存在实数使,若存在,求的值;若不存在,说明理由解法一:()如图,设,把代入得,xAy112MNBO由韦达定理得,点的坐标为设抛物线在点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论