


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2003年考研数学三真题及全面解析203年全国硕士入学统考数学(三)试题及答案一、 填空题(本题共6小题,每小题分,满分分 把答案填在题中横线上)(1)设 其导函数在x0处连续,则的取值范围是.【分析】 当0可直接按公式求导,当x=时要求用定义求导.【详解】 当时,有 显然当时,有,即其导函数在x=0处连续.(2)已知曲线与x轴相切,则可以通过a表示为 .【分析】 曲线在切点的斜率为0,即,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到与a的关系.【详解】 由题设,在切点处有 ,有又在此点y坐标为0,于是有 ,故 (3)设a0,而d表示全平面,则= .【分析】本题积分区域
2、为全平面,但只有当时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 =(4)设n维向量;e为阶单位矩阵,矩阵 ,其中a的逆矩阵为b,则a - 【分析】 这里为阶矩阵,而为数,直接通过进行计算并注意利用乘法的结合律即可.【详解】 由题设,有 =,于是有 ,即 ,解得 由于a0 ,故=()设随机变量x 和y的相关系数为0.,若,则y与z的相关系数为 0.9 .【分析】 利用相关系数的计算公式即可.【详解】 因为 =e(xy) e(x)e()=cov(x,),且于是有 co(,z)=(6)设总体x服从参数为2的指数分布,为来自总体的简单随机样本,则当时,依概率收敛于 .【
3、分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值: 【详解】 这里满足大数定律的条件,且=,因此根据大数定律有 依概率收敛于二、选择题(本题共小题,每小题分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)()设f(x)为不恒等于零的奇函数,且存在,则函数() 在x=处左极限不存在 (b)有跳跃间断点0.(c) 在0处右极限不存在 (d) 有可去间断点x= d 【分析】 由题设,可推出f(0)=0, 再利用在点=处的导数定义进行讨论即可.【详解】 显然x为g()的间
4、断点,且由f(x)为不恒等于零的奇函数知,f(0)=0于是有 存在,故=0为可去间断点.(2)设可微函数f(x,)在点取得极小值,则下列结论正确的是(a)在处的导数等于零. ()在处的导数大于零.()在处的导数小于零. () 在处的导数不存在. 【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(,y)在点取得极小值,根据取极值的必要条件知,即在处的导数等于零, 故应选(a).(3)设,,则下列命题正确的是()若条件收敛,则与都收敛(b)若绝对收敛,则与都收敛.(c) 若条件收敛,则与敛散性都不定(d)若绝对收敛,则与敛散性都不定. 【分析】 根据绝对收敛与条
5、件收敛的关系以及收敛级数的运算性质即可找出答案.【详解】若绝对收敛,即收敛,当然也有级数收敛,再根据,及收敛级数的运算性质知,与都收敛,故应选(b).(4)设三阶矩阵,若a的伴随矩阵的秩为,则必有(a) a或a+2b=0 (b) ab或+b0.(c) b且a+2b=0. (d) a且a+2b. c 【分析】 的伴随矩阵的秩为1, 说明a的秩为2,由此可确定a,b应满足的条件.【详解】 根据与其伴随矩阵秩之间的关系知,秩(a)2,故有 ,即有或ab.但当a=时,显然秩(a), 故必有 b且a+2b0. 应选(c).()设均为n维向量,下列结论不正确的是(a)若对于任意一组不全为零的数,都有,则线
6、性无关.(b) 若线性相关,则对于任意一组不全为零的数,都有(c) 线性无关的充分必要条件是此向量组的秩为s.(d)线性无关的必要条件是其中任意两个向量线性无关 b 【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(a): 若对于任意一组不全为零的数,都有 ,则必线性无关,因为若线性相关,则存在一组不全为零的数,使得 ,矛盾. 可见(a)成立(b):若线性相关,则存在一组,而不是对任意一组不全为零的数,都有 ()不成立.(c) 线性无关,则此向量组的秩为s;反过来,若向量组的秩为s,则线性无关,因此(c)成立.(d)
7、线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(d)也成立.综上所述,应选().(6)将一枚硬币独立地掷两次,引进事件:=掷第一次出现正面,=掷第二次出现正面,=正、反面各出现一次,=正面出现两次,则事件() 相互独立. (b)相互独立. (c)两两独立. (d) 两两独立. c 【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.【详解】 因为,,且 ,,可见有,,.故两两独立但不相互独立;不两两独立更不相互独立,应选(c).三、(本题满分8分)设 试补充定义f(1)使得f(x)在上连续.【分析】 只需求出极限,然后定义(
8、)为此极限值即可【详解】 因为 = = = =由于f(x)在上连续,因此定义 ,使f(x)在上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足,又,求【分析】 本题是典型的复合函数求偏导问题:,直接利用复合函数求偏导公式即可,注意利用【详解】 ,故 ,所以 五 、(本题满分8分)计算二重积分 其中积分区域d=【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算【详解】作极坐标变换:,有 =令,则 .记 ,则 = = =因此 , 六、(本题满分分)求幂级数的和函数f(x)及其极值.【分析】先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1.求出和函数后,
9、再按通常方法求极值.【详解】 上式两边从0到x积分,得 由f(0)=1, 得 令,求得唯一驻点x=0. 由于 ,可见f(x)在x=0处取得极大值,且极大值为 f()=1.七、(本题满分分)设f(x)=()g(x), 其中函数f(x),g(x)在内满足以下条件: ,且f(0)=0,(1) 求f(x)所满足的一阶微分方程;(2) 求出f()的表达式.【分析】(x)所满足的微分方程自然应含有其导函数,提示应先对f()求导,并将其余部分转化为用f(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 (1)由 = = (2-2f(),可见f(x)所满足的一阶微分方程为() = 将f(0)=
10、f(0)g()=0代入上式,得 c=-1.于是 八、(本题满分分)设函数f(x)在0,3上连续,在(,)内可导,且f(0)+f()+f(2)=3,f(3)=.试证必存在,使【分析】根据罗尔定理,只需再证明存在一点c,使得,然后在c,3上应用罗尔定理即可 条件(0)(1)+f()=等价于,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】 因为f(x)在0,3上连续,所以f(x)在0,2上连续,且在0,2上必有最大值m和最小值m,于是 , , 故由介值定理知,至少存在一点,使 因为(c)=1=f(), 且f(x)在c,3上连续,在(c,3)内可导,所以由罗尔定理知,必存在,
11、使九、(本题满分3分)已知齐次线性方程组 其中 试讨论和满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等可先将所有列对应元素相加,然后提出公因式,再将第一行的(1)倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式 (1) 当时且时,秩(a)=n,方程组仅有零解.(2) 当= 时,原方程组的同解方程组为 由可知,不全为零. 不妨设,得原方程组的一个基础解系为,当时,有,原方程组的系数矩阵可化为
12、 (将第行的-倍加到其余各行,再从第行到第n行同乘以倍) (将第n行倍到第2行的倍加到第1行,再将第1行移到最后一行) 由此得原方程组的同解方程组为 ,,.原方程组的一个基础解系为 十、(本题满分13分)设二次型,中二次型的矩阵a的特征值之和为,特征值之积为-12.(1) 求a,的值;(2) 利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵【分析】特征值之和为a的主对角线上元素之和,特征值之积为a的行列式,由此可求出a, 的值;进一步求出的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】
13、(1)二次型的矩阵为 设a的特征值为 由题设,有,解得a=,b= -2()由矩阵a的特征多项式 ,得a的特征值对于解齐次线性方程组,得其基础解系 ,对于,解齐次线性方程组,得基础解系 由于已是正交向量组,为了得到规范正交向量组,只需将单位化,由此得,,令矩阵,则q为正交矩阵.在正交变换xq下,有,且二次型的标准形为 十一、(本题满分3分)设随机变量的概率密度为 f(x)是x的分布函数 求随机变量y=f(x)的分布函数.【分析】先求出分布函数f(x) 的具体形式,从而可确定f(x) ,然后按定义求y的分布函数即可。注意应先确定y=(x)的值域范围,再对分段讨论.【详解】易见,当x8 时,f(x)=1.对于,有 设g(y)是随机变量y=f(x)的分布函数 显然,当时,()=;当时,g(y)1.对于,有 = 于是,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年药学专业执业药师考试题及答案
- 2025年学前教育专业考试试卷及答案
- 2025年网络空间安全考试试题及答案
- 2025年素描考试试题及答案解析
- 2025年数字营销策略考试题及答案
- 2025年气象学与环境监测考试试题及答案
- 2025年环境科学专业硕士研究生入学试题及答案
- 2025年环境工程考试试卷及答案
- 2025年国际商务谈判能力考试题及答案
- 亲爱的小鱼读后感作文12篇
- 阿托品-教学讲解课件
- 异位妊娠的诊治进展
- 离心泵设计计算
- 苏教版小学数学四年级下册期末测试卷(5套含答案)
- 施工图审核报告
- 七年级下册英语语法精解试题
- GB/T 5291.1-2023电火花成形机床精度检验第1部分:单立柱机床(十字工作台型和固定工作台型)
- IgG4相关性疾病课件
- 腰椎ODI评分完整版
- 实验五探索淀粉酶对淀粉和蔗糖水解的作用
- DB51-T 3041-2023佯黄竹丰产栽培技术规程
评论
0/150
提交评论