《数学模型》考试试卷_第1页
《数学模型》考试试卷_第2页
《数学模型》考试试卷_第3页
《数学模型》考试试卷_第4页
《数学模型》考试试卷_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一:填空题1.“商人怎样安全过河”模型中状态随决策变化的规律是。(允许决策模型)1、 2、“公平的席位分配”模型中的Q值法计算公式是。3、“存贮模型”的平均每天的存贮费用计算公式为,当时,最小。4、LINGO中,表示决策变量x是0-1变量的语句是 gin(x) 。5、一阶自治微分方程的平衡点是指满足 的点,若 成立,则其平衡点是稳定的。6、市场经济中的蛛网模型中,只有当 时,平衡点 才是稳定的。7、“传染病模型”中SIS模型是指被传染者康复以后,还有可能再次感染该传染病。8、传送系统的效率模型中,独立地考虑每个钩子被触到的概率为,则共有个钩子的系统中,一周期内被触到个钩子的概率为 。9、我们所

2、建立的“人口指数增长”模型是根据微分方程 建立的。我们所建立的“人口阻滞增长”模型是根据微分方程 建立的。10、“商人怎样安全过河”模型中,从初始状态到终止状态中的每一步决策都是集合D中的元素 。11、建立起的“录像机计数器的用途”模型中的参数和可用 数值积分 方法求得。12、“双层玻璃的功效”模型中,建筑规范一般要求双层玻璃的间隙约为玻璃厚度的1/2 。“双层玻璃的功效”模型中,按建筑规范实施的双层玻璃可节能 97 %。13、“传染病模型”中所未涉及的模型是SIS模型. 14、下列正则链和吸收链的说法中,错误的是 吸收链存在唯一极限状态概率。 15、“人口阻滞增长”模型是在“指数增长模型”的

3、前提下, 假设人口增长率是人口数量的减函数 。16、“人口阻滞增长”模型中,当人口数时,人口增长率最大;当人口数时,人口增长率为0。17、“录像带计数器的读数”多种方法建立的模型都是。“录像机计数器的用途”模型中,计数器的读数 的增长速度越来越慢 。18、“双层玻璃的功效”模型中,所依据的基本物理公式是。19、“经济增长模型”中,衡量经济增长的指标有 总产值的增长 、 单位劳动力产值的增长 。 “经济增长模型”中,要保持总产值增长,即要求。20、“传染病模型”中SIR模型是指被传染者康复以后具有免疫性, 不再感染该传染病。21. 存贮模型的优化目标是 平均每天费用最小。22.“经济增长模型”中

4、,要保持平均每个劳动力的产值增长,即要求 劳动力的增长率小于初始投资增长率。23.“层次分析模型”中成比对矩阵如果满足如下 式,则称为一致阵。 二:概念题1、 一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。2、学习数学建模应注意培养哪几个能力?(5分) 答:观察力、联想力、洞察力、计算机应用能力。3、人工神经网络方法有什么特点?(5分) 答:(1)可处理非线性;(2)并行结构;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。三:问答题 1、请用简练的语

5、言全面的描述数学建模的过程和数学模型的特点。(10) 答:(1)建模过程:模型准备模型假设模型构成模型求解模型检验模型应用。 (2)数学模型的特点:逼真性和可行性;渐进性;强健性;可转移性;非预制性;条理性;技艺性;局限性;2、某家具厂生产桌子和椅子两种家具,桌子售价50元/个,椅子销售价格30元/个,生产桌子和椅子要求需要木工和油漆工两种工种。生产一个桌子需要木工4小时,油漆工2小时。生产一个椅子需要木工3小时,油漆工1小时。该厂每个月可用木工工时为120小时,油漆工工时为50小时。问该厂如何组织生产才能使每月的销售收入最大?(建立模型不计算)(10)解:(1)确定决策变量:x1=生产桌子的

6、数量x2=生产椅子的数量 4分(2)确定目标函数:家具厂的目标是销售收入最大max z=50x1+30x2(3)确定约束条件:4x1+3x250(油漆工工时限制)(4)建立的数学模型为:max S=50x1+30x2s.t. 4x1+3x250x1, x2 03、有四个工人,要分别指派他们完成四项不同的工作,每人做各项工作所消耗的时间如下表所示,问应如何指派工作,才能使总的消耗时间为最少?(建立模型不计算)(10)解:令目标函数:约束条件:4、结合自身的实际情况,谈谈数学建模的方法和自身能力的培训。(10) 答:(1)方法:机理分析、测试分析、实例研究 ; (2)能力:想象力、洞察力 。5、试

7、用简练的语言全面的描述“商人怎样安全过河”该类问题。(10) 答:求决策,使状态按照转移律,则初始状态经有限步到达状态。6、分别采用三种方法,用一句话和一个公式描述录像带计数器读数与经过的时间之间的关系模型。(10) 答:(1)当右轮盘转到第圈时其半径为,周长为,圈的总长度恰等于录像带转过的长度,即:; (2)考虑录像带转过的长度与厚度的乘积,等于右轮盘面积的增加,即:; (3)考虑用微积分的理论,有某小时间段内录像带转过的长度为速度乘以,它等于右轮盘绕上的录像带长度(由于),即:;以上三种方法都可得到:。7、简述差分方程平衡点的稳定性定义、三阶线性常系数差分方程平稳点稳定性的判别条件和非线性

8、差分方程平稳点的稳定性判别条件。(10)答:(1)差分方程的平衡点若满足:当时,则称平衡点是稳定的。(2)若三阶线性常系数差分方程的特征方程的根均有,则该差分方程的平衡点是稳定的,否则是不稳定的。(3)非线性差分方程的平衡点若满足,则平衡点是稳定的;否则若,则平衡点是不稳定的。 8:某中学有三个年级共1000名学生,一年级有219人,二年级316人,三年级有465人。现要选20名校级优秀学生,请用下列办法分配各年级的优秀学生名额:(1)按比例加惯例的方法;(2)Q 值法。另外如果校级优秀学生名额增加到21个,重新进行分配,并按照席位分配的理想化准则分析分配结果。解:20个席位:(1)、,因此比

9、例加惯例分配结果为5、6、9个。(2)三方先分得4、6、9个,2398.05,2377.522402.5,最大,按值法分配结果为4、6、10个。 。8分21个席位:(1),因此比例加惯例分配结果为4、7、10个。(2)三方先分得4、6、10个, 195.68,最大,按值法分配结果为5、6、10个。 。16分显然此例中比例加惯例的方法违背了席位分配的理想化准则1,而值法分配结果恰好也满足准则2,因此值法分配结果是同时符合准则1和准则2.。 。20分9:大学生毕业生小李为选择就业岗位建立了层次分析模型,影响就业的因素考虑了收入情况、发展空间、社会声誉三个方面,有三个就业岗位可供选择。层次结构图如图

10、,已知准则层对目标层的成对比较矩阵,方案层对准则层的成对比较矩阵分别为,。请根据层次分析方法为小李确定最佳的工作岗位。 选择发展就业岗位收入发展声誉岗位1岗位2岗位3解:用“和法”近似计算得:矩阵对应的权向量为:,最大特征根为3.,矩阵对应的权向量为:,最大特征根为3.,矩阵对应的权向量为:,最大特征根为3.00703,矩阵对应的权向量为:,最大特征根为3.00922,。12分组合权向量为因此最佳的岗位为岗位3。 。16分10:某保险公司欲开发一种人寿保险,投保人需要每年缴纳一定数的额保险费,如果投保人某年未按时缴纳保费则视为保险合同终止(退保)。?保险公司需要对投保人的健康、疾病、死亡和退保

11、的情况作出评估,从而制定合适的投保金额和理赔金额。各种状态间相互转移的情况和概率如图。试建立马氏链模型分析在投保人投保时分别为健康或疾病状态下,平均需要经过多少年投保人就会出现退保或死亡的情况,以及出现每种情况的概率各是多少?退保健康死亡疾病0.150.050.10.070.030.6 解:由题意,转移概率矩阵为,从而知状态“退保”和“死亡”为两个吸收状态,此为吸收链。 。6分= =,因此在投保时健康或疾病状态下,平均需要经过或6年投保人就会出现退保或死亡的情况。 。12分=,因此在投保时健康状态下,被“退保”和“死亡”吸收的概率分别为0.72和0.28;在投保时疾病状态下,被“退保”和“死亡

12、”吸收的概率分别为0.66和0.34。四:模型求证题1、 某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分)证明:记出发时刻为t=a,到达目的时刻为t=b,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t),t是一天内时刻变量,则f(t),g(t)在a,b是连续函数。作辅助函数F(t)=f(t)-g(t),它也是连续的,则由f(a)=0,f(b)0和g(a)0,g(b)=0,可知F(a)0,由介值定理知存在t0属于(a,b)使F(

13、t0)=0, 即f(t0)=g(t0) 。2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分)解:模型构成: 记第k次渡河前此岸的商人数为,随从数为,k=1,2,.,=0,1,2,3。将二维向量=(,)定义为状态。安全渡河条件下的状态集合称为允许状态集合,记做S。S= (3分)记第k次渡船上的商人数为随从数为将二维向量=(,)定义为决策。允许决策集合记作D,由小船的容量可知D= (3分)状态随的变化规律是: = + (3分)模型求解 用图

14、解法解这个模型更为方便,如下:(6分)五:计算题(共5小题,每小题9分,本大题共45分)1、试用和法求出A的最大特征值,并做一致性检验(n=3时, RI=0.58)。答: 中各列归一化 ,各行求和 = 2分 而,(1分)所以最大特征根为 2分其一致性指标为:CI=2分CR=, 所以A不通过一致性检验。 2分2、 一块土地,若从事农业生产可收100元,若将土地租给某乙用于工业生产,可收200元。若租给某丙开发旅游业可收300元。当丙请乙参与经营时,收入达400元,为促成最高收入的实现,试用shapley值方法分配各人的所得。(9分)答:甲、乙、丙所得应为250元,50元,100元(步骤略)3、产

15、品每天需求量为常数r, 每次生产准备费用为C1,每天每件产品贮存费用为C2, 缺货损失费为C3,试作一合理假设,建立允许缺贷的存贮模型,求生产周期及产量使总费用最小。(9分)解:模型假设:1.产品每天需求量为常数r 2.每次生产准备费用为c1,每天每件产品贮存费用为c2 3.生产能力无限大 ,缺货损失费为C3 ,当t=T1时产品已用完 4.生产周期为T,产量为Q (2分)模型建立:一周期总费用如下: 一周期平均费用为 (2分)模型求解: 用微分法解得周期 (1分)产量 (1分)4、人的状态分为三种:1(健康),2(患病),3(死亡)。设对特定年龄段的人,今年健康,明年保持健康的概率为0.8,患

16、病的概率为0.18,而今年患病的人明年健康的概率为0.65,健康的概率为0.25,构造马氏链模型,说明它是吸收链,并求健康,患病出发变成死亡的平均转移次数。解:状态,依歇易得转移概率阵为 2分记, 则 (1分)易是: (2分) , 由健康、患病出发变成死亡的平均转移次数分别为 。 (1分)5设渔场鱼量满足下列方程:(9分)(1)讨论鱼场鱼量方程的平衡点稳定状况(2)如何获得最大持续产量解:令,的最大值点为 (2分)当时,无平衡点 (1分)当时,有两个平衡点和,经过判断x1不稳定,x2稳定 (2分)当时,平衡点,由不能判断它稳定性 (2分)(2)为了获得最大持续产量,应使且尽量接近,但操作困难

17、(2分)六:建模题(共2小题,每小题10分,本大题共20分)1考虑药物在体内的分布与排除之二室模型即:把整个机体分为中心室与周边室两室,两室之间的血药相互转移,转移速率与该室的血药浓度成正比,且只有中心室与体外有药物交换,药物向体外排除的速率与该室的血药浓度成正比,试建立两室血药浓度与时间的关系。(不必求解)解:假设、和分别表示第室的血药浓度,药量和容积,是两室之间药物转移速率系数,是从中心室(第1室)向体外排除的速率系数 3分则(1) 6分(其中是给药速率) 及于是: 4分2、某工厂拟安排生产计划,已知一桶原料可加工10小时后生产A产品2公斤,A产品可获利30元/公斤 ,或加工8小时可生产B

18、产品3公斤,B产品可获利18元/公斤,或加工6小时可生产C产品4公斤,C产品可获利12元/公斤,现每天可供加工的原料为60桶,加工工时至多为460小时,且A产品至多只能生产58公斤。为获取最大利润,问每应如何安排生产计划?请建立相应的线性规划模型(不必求解,10分)。答:设每天安排x1桶原料生产A产品,x2桶原料生产B产品,x3桶原料生产C产品,则有:七(1):简答题(本题满分16分,每小题8分)1、在录像机计数器的用途中,仔细推算一下(1)式,写出与(2)式的差别,并解释这个差别;1、 答:由(1)得, 。4分将代入得, 。6分因为所以,则得(2)。 。8分2、试说明在不允许缺货的存储模型中为什么没有考虑生产费用,在什么条件下可以不考虑它;2、答:假设每件产品的生产费用为,则平均每天的生产费用为,每天的平均费用是 , 。4分下面求使最小,发现,所以 ,与生产费用无关,所以不考虑。 。8分七(2):简答题(本题满分16分,每小题8分)?1、对于传染病的SIR模型,叙述当时的变化情况 并加以证明。 1、答:由(14)若,当时,增加; 。4分当时,达到最大值;当时,减少且由1.知 。8分2、在捕鱼业的持续收获的效益模型中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论