毕业设计英文翻译-_第1页
毕业设计英文翻译-_第2页
毕业设计英文翻译-_第3页
免费预览已结束,剩余22页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、郑州航空工业管理学院英 文 翻 译 2009届机械设计制造及其在自动化专业0906963班级姓 名 赵建伟 学号 090696328指导教师 李明 职称 教授 二一 一 年 四 月 六 日译文: 原文出自 IDR INDUSTRIAL DIAMOND REVIEW 4/2001 volume 61 金刚钻的工业化运用一个程序一般需要50至70美网。在这样的切割频率下,工具的负载量是比较低的。而欧洲这样的程序下金刚钻的模型是完全不一样的!在我国,在这样的程序下,普遍金刚钻工具在非常自由的切割条件下,产品是不规则的易碎的微粒!在欧洲因为各种因素,情况是不同的。因为欧洲的生活水平远高于我国,因此,他

2、们的劳动力成本也要高。为了使欧洲最大的石材生产商保持竞争力,他们必须要把注意力从原材料转移到生产的有效输出和最大化输出。这就要求产品从原材料到成品的生产过程中尽可能减小能源的耗费和不必要的浪费。该方法需要机床技术能够高速运作和先进的加工,可进行可靠的长时间持续的,无人值守操作。在20世纪90年代,在机械和金刚石工具技术方面有很大的发展,使产量增加和降低生产成本。如果我们对比一下欧洲和中国生产标准,我们可以看到在机器和工具的生产方面,中欧存在很大的差距。在欧洲,制造这些瓷砖几乎是完全自动的,因为高效率的机械设计和自动处理设施。最新一代的锯床这种应用能够使用主轴高达80分直径锯片。机器和工具的设计

3、,在达到下列的参数下,切割率是可以更快的。表面速度: - 25 35m / s切削深度: -1mm大桥速度: - 17m/min切割速度: - IPOcm/5min或1m/h每个刀片机输出: - 640m/5day( 8小时每天)在这样的条件下,生产浪费减至最低,产量确更高。通常情况下,在欧洲,刀片会产生10mm的缺口,而中国有12mm。并且相对于中国12-15mm的切面的切口,欧洲只有10-12mm的切口。在实现生产最大化材料处理和优化加工时间也是关键,厚片的切据被自动转移到自动的二次加工。在这样精确的切割率下,对于金刚钻工具的要求是很高的,在程序控制下,型号和尺寸与中国的标准下是有很大不同

4、的。由于切割率相对高很多,最通常的尺寸是30-50。切割率高,意味着工具的负载量也高,金刚钻的性质也会不一样!金刚钻的要求一般都是统一的,强大,块状颗粒,这是使在长时间的高负荷下,保持高产量。钻石花岗岩加工为了进一步增加生产力,各个领域都集中研究石材加工作业。除了改善物质产量和减少浪费成本,钻石生产商,机床制造商和钻石工具制造商增加大量的投,以增加产出的机器和工具组合。有些致力于大理石加工设备。在欧洲,最快的花岗岩加工设备的使用水平只相当于4 大理石加工业。一般情况下,因为在热和机械超负荷的金刚石工具条件限制下,在处理花岗岩切削深度大于25毫米往往不能够达到的。一个由欧洲合作伙伴组成的工业钻石

5、生产组织,由一个金刚石工具制造商,机床制造商,生产锯机构组成的研究机构开展了一项石材加工的研究计划。重点放在以全面的方式对待这个问题,并考虑到技术,经济和环境方面的考虑。该项计划的一个主要目标是开发一个系统元件可以是深度切割的范围扩大到100 - 300毫米。所需的组件将是一个高效率环形金刚石锯片和改善润滑系统提供的工具,工件接口,以保持一个稳定的削减长时间,因为这是必不可少的高度自动化的进程。这项研究工作分为两个阶段:1实验室测试,以获得基本的信息(材料性质,进程,温度和振动)为基础,实现必要的改进机器和工具的设计。2在第一阶段的数据基础上开发工具及机器部件(锯片部分,润滑和修整系统)。该项

6、目设计的关键因素之一是,模型和小型工具的使用,以便观察切割工程中工具的压力,温度,震动性等。当使用小规模的工具,重要的是,系统的执行是符合充分大规模的工业应用。为了克服这个困难,许多专家提出了各种锯模式和在系统中通常被认可的两个关键变量,切割速度和切割深度。使用这些参数和几何信息的工具,有可能提出一个简化模型公式相当于切屑厚度产生的圆形切割作业。使用这种类型的公式有可能重现类似的条件和力量,通常会运用于工业应用。深锯切下的温度带和力测量小规模的实验室试验来检测进行深锯在切削区和切削力产生的热量。.这一信息是必要的,以便确定加工过程中的润滑油的比例,并预测金刚石工具承受的压力。该模型工具的详细信

7、息是基于直径400毫米圆锯在锯片生产过程中的抗压性。一克拉包含660+/-30粒切割一个中等分类的意大利花岗岩和更难的机器印度红色花岗岩因为他代表着最精确的工作指数。在切割过程中,切割的深度保持在90mm, 这些条件将订单以380cm/min进行工业设置。温度的测试是一直需要的,当切割率增高时,温度也是越来越高的,但是,在达到最快的速度是,温度也是不会超过200 C。为了机器最后的设计和完整的机器尺寸,压力也是要测量的,通常是用测力仪,测量常温和阶段性温度。压力的分析和钻石的等级决定于钻石在那个操作系统下切割的。这些是很关键的,为了保持一个稳定的钻石的耐磨系数和调整钻石的凹凸。深锯切花岗石基于

8、第一阶段收集的数据,不同的深锯过程决定的设计要求不同的设备。关于金刚石刀片的时机,特备强调以下设备的设计:工具的详细说明和制造的环境必须确保磨削切屑厚度促进充分材料去除和钻石凸出。根据深锯条件芯片厚度要是最小。主要关切的领域是,如果切削参数是极其严重的,则切屑厚度可能超过钻石凸出高度。在这种情况下可能发生灾难性的失败,因为钻石颗粒将展出过度断裂,导致间隙不足,工件和债券矩阵。这将导致正常的力量增加,并导致灾难性故障的工具。其他方面的项目突出各种要求机器稳定性,润滑驱动器等,这些将被认为是最后组装深锯床。实地测试一系列用改进的块切割大规模的试验者。其目的是研究许多不同方面的运作,如机械振动和噪声

9、分析,润滑的切割操作,测量的表面纹理和平行的锯瓷砖地带以及行为的金刚石工具。根据输出的第1阶段,各种性能标准已被确定为关键的系统是成功的。显然,工具的性能是一个关键领域。印度红花岗岩被选为工件材料,因为它代表一个很据代表性的的材料进行处理。测试进行时,普遍接受的工具的性能标准的刀片服务器上使用的3分多的刀片系统,降低瓷砖是在该地区的九平方米。为此,目标工具的性能被选为九十零平方米。这些成果的实地试验表明,深切割的条件下,有可能产生一个加工系统,可以提高工作效率和创造降息秩序。在这种情况下,没有出现工具偏差。表1 Tool Number123DiamondType IType IIType II

10、Diamond Size30/4035/6035/60Concentration303035Bond typeCobalt 1Cobalt 2Cobalt 2Core Thickness5mm5mm5mm表2叶片加工参数及规格切割深度 (mm)100边缘速率 (m/s)30-42Feed Rate (m/min)0.38切割率 (cm2 /min)380刀口直径 (mm)1,000颗粒数70高度 (mm)10长度 (mm)23宽度 (mm)6.8对传统的块切割机的工作条件下,切割的深度是12m/mm,速度是120cm/7min。各种分析测试表明,在所有情况下,钻石颗粒在其操作系统下,会保持一个

11、表面的光滑。切割深度在300mm时,传统操作下的材料消耗是9.5倍,并且工具的寿命会很急剧下降。深锯切的前景这些测试结果预示着现阶段超强度投入的人造金刚石的无限前景。当我们转移注意力到加工过程,制造工具的优化,参数和工具的设计同步发展。一个有别于传统的创造性的生产系统是可以产生的。金刚石绳在石材加工中的使用前景在天然石材业,金刚石绳锯被广泛应用于已加工和提取花岗岩和大理石材料。在欧洲,金刚石绳被认为是标准的大理石采石工具,并且在开采花岗岩方面取得重大进展。金刚石绳使用也越来越多,在加工大理石和花岗岩也被广泛应用。在90年代初,固定钢丝锯床的使用仅限于少数石材加工者,他们主要用它来将石块切成锯片

12、。此后,不断涌现各种大量多样的具有重要意义的技术。图7 工具技术含量的发展在1997年,一个全新的商业化的控制线锯数控机概念被引出,能应用于复杂的建筑切割。 在汇集了最新的概念机床,机床控制技术和国家最先进的金刚石工具等一系列的设备的安装,处理各种不同的石料,必须要投入高额的成本。采用这种金刚石线这种技术,克服了技术和商业障碍,使得建筑师和设计师能够实现在内部和外部装饰石材项目的设计。生产大尺寸超薄花岗岩板材,尺寸在10 - 40毫米,也只能使用传统的方法。因为车身设计和切缝厚度的限制,圆形锯也是不可行的。金刚石绳代替过时的技术被提出了很多年,但是直至1997年,一个切实可行的,商业操作的金刚

13、钻工具才问世,如图8。图8 CNC 控制锯机 图9 多线锯机本机特别设计利用高规格的金刚石线,取代传统的研磨框锯机。该机器采用10根直径8毫米钻石电线,并能处理量相当于两个常规磨料框架锯能处理的加工,另外它还能改进石头表面纹理,减少废弃物数量的物质和能量。改进表面纹理仅意味着随后磨削加工时间可减少约20。金刚石绳的应用,促使该工具取得了很大的成功。其中有两个重要的因素,第一,直径线直接有助于工件材料利用率。最开始的金刚石绳,花岗岩锯的直径是10-12mm,现在的直径是6-8mm.。第二。金刚石绳的实际操作。这个可以从两个方面加以说明。第一,金刚石线必须实现切割速度是可持续的长期的,也必须足够的

14、生产能力来最大限度地带来其他好处,如降低能耗和减少废料。 为了发挥这所有的有点,钻石技术不断的进步。最早的电镀金导线用于不规则的大理石和中等强度易于切削的大理石。现在的金刚石绳用于复杂的高强度的人造金刚石的生产。Debid在过去的十年中一直致力于金刚石绳的研究。研究侧重于应用的细节,特别是相互作用的工具,工件,设备的设计。Debid集中研究在产品尺寸,强度,热稳定性上满足市场需求。在英国,Debid的金刚石绳的研究被广泛采纳。锯床的电线已被配置为模拟附近可能遇到的条件在正常的生产环境。图 10 Debid wire 实验锯机在过去10年中,产生的数据现实很多的意见和趋势都得到了认可。其中的一些

15、进步不是在工具的应用上,而是更多的金刚石绳的生产。最早的金刚石绳应用于大理石的电镀,紧接着应用于花岗岩的加工。 现在最新的发展是,采用热等静压,生产粉末冶金,金刚石绳也盖面了烧结部分的密度和连贯性!最后,出现了采用单层和多层钎焊金刚石工具 图9 ,加强钻石粘附性。因此工具的格局会给金刚石绳生产带来巨大的变化,也节约成本。 编制加工数据反映在固定的电源下,工具的切割率和寿命。影响工具性能的因素主要有工件选择和操作参数。在十年期间的观察,切割速度产生针对这种应用一直固定在该地区的170 - 250cm/min 。图 12 图示典型的花岗岩锯丝的发展这组数据显示,金刚石绳被广泛应用。金刚石绳一直的应

16、用一直保持在这样的增长率,因为它的应用较低了成本,延长了工具的使用寿命。高速切削高速切削加工是面向21世纪的一项高新技术,它以高效率、高精度和高表面质量为基本特征,在汽车工业、航空航天、模具制造和仪器仪表等行业中获得了愈来愈广泛的应用,并已取得了重大的技术经济效益,是当代先进制造技术的重要组成部分。高速切削是实现高效率制造的核心技术,工序的集约化和设备的通用化使之具有很高的生产效率。可以说,高速切削加工是一种不增加设备数量而大幅度提高加工效率所必不可少的技术。高速切削加工的优点主要在于:提高生产效率、提高加工精度及降低切削阻力。 有关高速切削加工的含义,目前尚无统一的认识,通常有如下几种观点:

17、切削速度很高,通常认为其速度超过普通切削的5-10倍;机床主轴转速很高,一般将主轴转速在10000-20000r/min以上定为高速切削;进给速度很高,通常达15-50m/min,最高可达90m/min;对于不同的切削材料和所釆用的刀具材料,高速切削的含义也不尽相同;切削过程中,刀刃的通过频率(Tooth Passing Frequency)接近于“机床刀具工件”系统的主导自然频率(Dominant Natural Frequency)时,可认为是高速切削。可见高速切削加工是一个综合的概念。1992年,德国Darmstadt工业大学的H. Schulz教授在CIRP上提出了高速切削加工的概念及

18、其涵盖的范围,如图1所示。认为对于不同的切削对象,图中所示的过渡区(Transition)即为通常所谓的高速切削範围,这也是当时金属切削工艺相关的技术人员所期待或者可望实现的切削速度。高速切削加工对机床、刀具和切削工艺等方面都有一些具体的要求。下面分别从这几个方面阐述高速切削加工技术的发展现状和趋势。现阶段,为了实现高速切削加工,一般釆用高柔性的高速数控机床、加工中心,也有釆用专用的高速铣、钻床。这些设备的共同之处是:必须同时具有高速主轴系统和高速进给系统,才能实现材料切削过程的高速化。高速切削与传统切削最大的区别是,“机床刀具工件”系统的动态特性对切削性能有更强的影响力。在该系统中,机床主轴

19、的刚度、刀柄形式、刀长设定、主轴拉刀力、刀具扭力设定等,都是影响高速切削性能的重要因素。 在高速切削中,材料去除率(Metal Removal Rate,MRR),即单位时间内材料被切除的体积,通常受限于“机床-刀具-工件”工艺系统是否出现“颤振”。因此,为了满足高速切削加工的需求,首先要提高机床动静刚度尤其是主轴的刚度特性。现阶段高速切削之所以能够成功,一个很关键的因素在于对系统动态特性问题的掌握和处理能力。为了更好地描述机床主轴的刚度特性,工程上提出新的无量纲参数DN值,用以评价机床的主轴结构对高速切削加工的适应性。所谓DN值即“主轴直径与每分钟转速之积”。新近开发的加工中心主轴DN值大都

20、已超过100万。为了减轻轴承的重量,还釆用了比钢制品要轻得多的陶瓷球轴承;轴承润滑方式大都釆用油气混合润滑方式。在高速切削加工领域,目前已开发空气轴承和磁轴承以及由磁轴承和空气轴承合并构成的磁气/空气混合主轴。 在机床进给机构方面,高速切削加工所用的进给驱动机构通常都为大导程、多头高速滚珠丝槓,滚珠釆用小直径氮化硅(Si3N4)陶瓷球,以减少其离心力和陀螺力矩;釆用空心强冷技术来减少高速滚珠丝槓运转时由于摩擦产生温升而造成的丝槓热变形。结论我们可以看到,尽管最近的经济处于低迷的状态,但石材加工业却稳步持续增长。毫无疑问,会带动全世界的石材的采集和加工业。在这些国家中,经济技术方面的差别,对于金

21、刚钻的生产,提供的设备工具也会有不同。欧洲国家在努力保持其成本竞争力的同时,正在努力致力于开发技术,改善工件的使用率。表现在金刚石绳在采石方面的应用,高精密的机器设备和多线锯的发展。生产力的提高,最明显的优势表现在成本的降低。本文阐述了两个关键的运用领域,金刚钻的生产在合适的机械和控制的一体化下,生产力得到极大的提高。机械工具的科技化和不断发展的新的人造金刚钻的组合,极大的促进了生产力的提高和降低了成本从而保持天然石材作为一个符合成本效益的建筑材料。. 参考文献:1 World Stone Industry Reports. Societa Editrice Apuana 1999.2 Mar

22、mo Macchine International 1999 26/99. The Stone Sectors Magnificent Seven.3 Roc Maquina June 1999, p144, Chinese Firms Focus on Quality.4 Synthesis Report of a European Commission Research program funded under the Brite Euram II umbreila entitled Development of a System for the Deep Sawing of Granit

23、e, November 1998.5 W. Ertingshausen Cutting Granite with Diamond Cut-off Blades, PhD thesis. University of Hanover, 1984.6 An Indicator System for Saw Grit, R Davis etal, 1996/97.7 Four-Axis Wire Saw for Profiling Stone, R Davis, IDR 4/97, pi 12.8 Falcon 600 - Wired for Success in Granite Slabbing,

24、IDR 2/97, p37.9 Brazed Beads with a DiamondGrid for Wire Sawing, IDR 4/98. p134. 附件:(外文资料原文)DE BEERS INDUSTRIAL DIAMONDSSHANNON, CO. CLARE, IRELAND TELEPHONE +35361471655 FAX +35361471201 WEB www.debid.ie PrennaDia and the name Debid are Trade Marks of the De Beers industrial Diamonds group of compa

25、niesA common size used in this application would be 50 to 70 US mesh. At these cutting rates, the loads the tool experiences are low, and as a result the properties of the diamond are quite different to those required for a similar application in Europe. In China, the diamond types typically require

26、d for this application are very irregular, friable particles which enable a tool to be produced which remains very free cutting under the prevailing conditions,In Europe the picture is different because of a number of factors. The standards of living are much higher than in China and, as a result, t

27、he European labour force commands a much higher labour cost. In order for Europes leading stone producers to be competitive, they have focused their attentions on working practices which optimise productivity output and maximise yield from their raw materials. These methods focus on transforming the

28、 quarried block to finished product as efficiently as possible while consuming low levels of energy and minimising unnecessary waste. The methods require machine tool technology capable of high speed operation and sophisticated tooling which can perform reliably over long periods of sustained, unatt

29、ended operation. During the 1990s there were many developments in machine and diamond tool technology which facilitated increased production rates and contributed significantly to a reduction in stone processing costs.If we draw comparisons between the technology available in Europe for the producti

30、on of modular tiles with that available in China, we can see an enormous divide both in machine and tool technology and in productivity. In Europe, the manufacture of these tiles is almost completely automated, due to efficient machine design and automatic handling facilities. The latest generation

31、of sawing machines for this application is capable of using a spindle with up to eighty 1m diameter saw blades.The design of the machine and tool allows faster cutting rates at the typical parameters shown below. Surface Speed:- 25 - 35m/s. Depth of cut:- 1mm Bridge Speed:- 17m/min Cutting rate:- IP

32、Ocm/5min or1m/h per blade Machine output:- 640m/5day (8hr day)In this type of environment wastage must also be minimised, thus maximising workpiece yield. Typically, blades would be generating kerf widths below 10mm compared with 12mm in China and a narrower tile section of approximately 10-12mm com

33、pared with 12-15mm in China. Material handling and optimising machining time are also key in achieving maximised productivity, so the slabs are sawn from the block in situ and automatically transferred to an automated machine for secondary processing.With these extreme cutting rates, the demands pla

34、ced upon the diamond tools are high and, as a result, the type and size of abrasive commonly seen in this type of application are very different to those commonly used in China. As the cutting rates are much higher, the abrasive size is correspondingly coarser, the most common size used in this appl

35、ication being in the region of 30 US mesh to 50 US mesh. At the higher cutting rates, the corresponding loads the tool experiences are higher and, as a result, the properties of the diamond are quite different. The diamond types typically required are very uniform, strong, blocky particles which ena

36、ble a tool to be produced which will remain very free cutting at these high rates of productivity but still perform consistently over long periods of sustained use at high loads.The Future of Diamond in Granite ProcessingIn attempts to make further increases inproductivity, various areas of research

37、 have centred on improving the economics of the stone processing operation. Apart from improving material yields and reducing wastage costs, a great deal of investment has been made by diamond producers, machine tool manufacturers and diamond tool makers in order to increase the output of the machin

38、e and tool combination. One such area 4 has looked at achieving some of the production capabilities of marble processing machines. The fastest granite processing machines in use in Europe are currently only capable of productivity levels equal to about 4% of those achievable in the marble processing

39、 industry. In general, cutting depths greater than 25mm tend not to be possible when processing granite, as this results in thermal and mechanical overload of the diamond tool.A consortium of European partners consisting of an industrial diamond producer,a diamond tool maker, machine tool manufactur

40、er, a saw body producer and research institutes embarked on a research programme to bring a new dimension to stone processing. Emphasis was placed upon a holistic approach to the problem and took into account technological, economic and environmental considerations. A primary objective of this progr

41、amme was to develop system components which would enable sawing to be conducted under deep cutting conditions, i.e. cutting depths ranging from 100mm - 300mm. The required components would be a high efficiency circular diamond saw blade and an improved system for providing lubrication at the tool-wo

42、rkpiece interface in order to maintain a stable cut over long periods of time, as this is essential for a highly automated process. The research work was split into two phases:1 Laboratory testing in order to obtain the fundamental information (material properties, process forces, temperatures and v

43、ibrations) as the basis for achieving the necessary improvements in machine and tool design.2 Development of tool and machine components (saw segments, lubrication and dressing systems) on the basis of the data from phase 1.One of the key elements of the project design in phase 1 was the use of mode

44、l or small scale tools in order to investigate process forces, temperatures at the workpiece - tool interface and vibration characteristics. When using small scale tools it is vital that the behaviour of the system is compatible with the full scale industrial application. To overcome this, various s

45、awing models have been proposed by many authors and two key variables in the system are commonly recognised, the cutting speed (v) and the depth of cut (a). Using these parameters and information regarding the geometry of the tool, it was possible to propose a simplified model formula for the equiva

46、lent chip thickness generated in the circular sawing operation.Using this type of formula it is possible to reproduce similar conditions and forces that would normally be encountered in the industrial application. Temperature Generation and Process Force Measurement in Deep Sawing ConditionsSmall sc

47、ale laboratory tests were scheduled to conduct deep sawing trials in order to measure the heat generated at the cutting zone and the cutting forces. This information would be necessary in order to determine the lubrication requirements of the ful,l scale prototype and also predict some of the forces

48、 the diamond tool would be subjected to during the machining process. The specification of the model tool was based upon a 400mm diameter circular saw tipped with saw segments manufactured using a strong, wear resistant cobalt bond. A premium strength diamond was used in a mesh size of 30/40 which n

49、ominally contains 660 +/- 30 particles per carat.Sawing was conducted using a medium classification of Italian granite, followed by a more difficult to machine Indian Red granite, as it represented one of the most extreme workpieces. During the cutting trials the depth of cut remained constant at 90

50、mm and the traverse rates were varied to yield cutting rates of WOcmVmin at the mildest end and GOOcmVmin at the harshest end. These conditions would be of the order of380cm2/min to iOOOcmVmin in the industrial set-up. Temperature measurements were obtained and, as would be expected, as the cutting

51、rate increased, the temperature generated increased, but even at the highest speeds the maximum temperatures generated were still less than 200C.Process forces were measured using a dynamometer, in order to measure the normal and tangential forces in order to assist in the development of the machine

52、 design and the final full size tool specification. Analysis of these forces and examination of the diamond wear progression 6 would then determine at which position the diamond was operating within its window of operation. This was critical in order to maintain a steady state of diamond wear and ad

53、equate diamond protrusion to facilitate chip removal.Process Requirements for the Deep Sawing of GraniteBased upon the information gathered in phase 1, certain process requirements relating to different design aspects of the deep sawing process were determined. With regard to the design of the diamo

54、nd blade, observations highlighted the following tool design requirements. The tool specificationand machining conditions must ensure that the grinding chip thickness facilitated adequate material removal and diamond protrusion. Under the deep sawing conditions it was unlikely the chip thickness wou

55、ld be too small. The main area of concern was that if the cutting parameters were extremely severe, then the chip thickness could exceed the diamond protrusion height. In this instance catastrophic failure could occur because the diamond particles would exhibit excessive fracture, leading to insuffi

56、cient clearance between workpiece and bond matrix. This would cause the normal forces to increase and result in catastrophic failure of the tool. Other aspects of the project highlighted various requirements for machine stability, lubrication drives etc. and these would then be considered for the fi

57、nal assembly of the deep sawing machine.Field TestingA series of full scale tests were conducted using a modified block cutter. The purpose was to study many different aspects of the operation, such as machine vibration and noise analysis, lubrication of the cutting operation, measurement of the surface texture and parallelism of the sawn tile strip as well as the behaviour of the diamond tool.Based upon the output of phase 1,the various performance criteria had been identified as being critical

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论