




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AMathematicalModelfortheMechanicalEtchingofGlassJ.H.M.tenThijeBoonkkampTechnischeUniversiteitEindhoven,DepartmentofMathematicsandComputerSciencetenthijewin.tue.nlSummary.Anonlinearfirst-orderPDEdescribingthedisplacementofaglasssur-facesubjecttosolidparticleerosionispresented.Theanalyticalsolutionisderivedbymeansofthemethodofcharacteristics.Alternatively,theEngquist-Osherschemeisappliedtocomputeanumericalsolution.Keywords:solidparticleerosion,kinematiccondition,singlePDEoffirstorder,characteristic-stripequations,Engquist-Osherscheme1IntroductionSomemoderntelevisiondisplayshaveavacuumenclosure,thatisinternallysupportedbyaglassplate.Thisplatemaynothinderthedisplayfunction.Forthatreasonithastobeaccuratelypatternedwithsmalltrenchesorholessothatelectronscanmovefreelyfromthecathodetothescreen.Onemethodtomanufacturesuchglassplatesistocoveritwithanerosion-resistantmaskandblastitwithanabrasivepowder.InSection2wepresentanonlinearfirst-orderPDEmodellingthisso-calledsolidparticleerosionprocess.Next,inSection3,wepresenttheanalyticalsolutionusingthemethodofcharac-teristics.Alternatively,inSection4,webrieflydescribeanumericalsolutionprocedure.2MathematicalModelforPowderErosionInthissectionweoutlineamathematicalmodelforsolidparticleerosion,toproducethintrenchesinaglassplate;formoredetailssee4.Consideraninitiallyflatsubstrateofbrittlematerial,coveredwithaline-shapedmask.Weintroducean(x,y,z)-coordinatesystem,wherethe(x,y)-planecoincideswiththeinitialsubstrateandthepositivez-axisisdirectedAMathematicalModelfortheMechanicalEtchingofGlass387intothematerial.Acontinuousfluxofalumina(Al2O3)particles,directedinthepositivez-direction,hitsthesubstrateathighvelocityandremovesmaterial.Thepositionz=(x,t)ofthetrenchsurfaceattimetisgovernedbythekinematicconditiont+(x)f(x)=0,0x0,(1)wherexisthetransversecoordinateinthetrench,andwhere(x)istheparticlemassflux,whichwillbespecifiedlater.Thespatialvariablesandxarescaledwiththetrenchwidthandthetimetwithacharacteristictimeneededtopropagateasurfaceatnormalimpactoverthiswidth.Thefunctionf=f(p)in(1)isdefinedbyf(p):=parenleftbig1+p2parenrightbigk/2,(2)withkaconstant(2k4).Atheoreticalmodelpredictsthevaluek=7/3,3.Equation(1)issupplementedwiththefollowinginitialandboundaryconditions:(x,0)=0,0x0.(3b)Theboundaryconditionsin(3b)meanthatthetrenchcannotgrowattheendsx=0andx=1.3AnalyticalSolutionMethodWecanwriteequation(1)inthecanonicalformF(x,t,p,q):=q(x)parenleftbig1+p2parenrightbigk/2=0,(4)withp:=xandq:=t.Thesolutionof(4)canbeconstructedfromthefollowingIVPforthecharacteristic-stripequations1dxds=Fp=(x)kp(1+p2)k/2+1,x(0;)=,(5a)dtds=Fq=1,t(0;)=0,(5b)dds=pFp+qFq=(x)1+(k+1)p2(1+p2)k/2+1,(0;)=0,(5c)dpds=(Fx+pF)=prime(x)1(1+p2)k/2,p(0;)=0,(5d)dqds=(Ft+qF)=0,q(0;)=(),(5e)388J.H.M.tenThijeBoonkkampwheresandaretheparametersalongthecharacteristicsandtheinitialcurve,respectively.Notethatthesolutionof(5b)and(5e)istrivial,andwefindt(s;)=sandq(s;)=().Inordertomodelthefiniteparticlesize,whichmakesthatparticlesclosetothemaskarelesseectiveintheerosionprocess,weintroducetransi-tionregionsofthickness.Weassumethat(x)increasescontinuouslyandmonotonicallyfrom0attheboundariesofthetrenchto1atx=,1.Theparameterischaracteristicofthe(dimensionless)particlesizeandatypicalvalueis=0.1.Weadoptthesimplestpossiblechoicefor(x),i.e.,(x)=x/if0x,1ifx1,(1x)/if1x1.(6)Asaresultof(6),thegrowthrateofthesurfacepositionclosetothemaskissmallerthaninthemiddleofthehole.Since(0)=(1)=0,weobtainfrom(5)thesolutionsx(t;0)=(t;0)=0andx(t;1)=1,(t;1)=0,implyingthattheboundaryconditions(3b)forareautomaticallysatisfied.Byintroducingtransitionregions,wecreateintersectingcharacteristics.Therefore,thesolutionof(4)canonlybeaweaksolutionanditisanticipatedthatshockswillemergefromtheedgesx=andx=1.Letx=s,1(t)andx=s,2(t)denotethelocationoftheshocksattimetoriginatingatx=andx=1,respectively.Eachpoint(s,i(t),t)(i=1,2)ontheseshocksisconnectedtotwodierentcharacteristicsthatexistonbothsidesoftheshocks.Thespeedoftheseshocksisgivenbythejumpconditionds,idtp=(x)(1+p2)k/2,(i=1,2),(7)wherepdenotesthejumpofpacrosstheshock.Thus,wecandistinguishthefollowingfiveregionsinthe(x,t)-plane:thelefttransitionregion0x00.20.40.60.8100.10.20.30.40.50.60.70.80.91xtFig.1.Characteristicsandshocksof(5),for=0.1andk=2.33.AMathematicalModelfortheMechanicalEtchingofGlass389(region1),therighttransitionregion1x1(region2),theinteriordomainleftofthefirstshock(region3),theinteriordomainrightofthesecondshock(region4)andtheregionbetweenthetwoshocks(region5);seeFig.1.Note,thatthelocationoftheshocksdependsonthesolutionthrough(7).Wecanderivetheanalyticalsolutionof(5)intheregions1,3and5,coupledwithanumericalsolutionof(7).Thesolutionintheothertworegionfollowsbysymmetry;formoredetailssee4.TheresultsarecollectedinFig.2,whichgivesthesolutionforandpattimelevelst=0.0,0.1,.,1.0for=0.1andk=2.33.Thisfigurenicelydisplaysthefeaturesofthesolution:aslantedsurfaceinthetransitionregions,aflatbottomintheinteriordomainandacurvedsurfaceinbetween.Also,inwardlypropagatingshocksareclearlyvisible.00.20.40.60.8100.10.20.30.40.50.60.70.80.91x00.20.40.60.813210123xpFig.2.Analyticalsolutionforthesurfaceposition(left)anditsslope(right).Pa-rametervaluesare=0.1andk=2.33.4NumericalSolutionMethodAlternatively,wewillcomputeanumericalsolutionof(1).Tothatpurpose,wecoverthedomain0,1withcontrolvolumesVj=xj1/2,xj+1/2)ofequalsizex=xj+1/2xj1/2.LetxjbethegridpointinthecentreofVj.Furthermore,weintroducetimelevelstn=nt,withtbeingthetimestep.Letnjdenotethenumericalapproximationof(xj,tn).Afinitevolumenumericalschemefor(1)canbewritteninthegenericformn+1j=njt(xj)Fparenleftbigpnj1/2,pnj+1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国面膜行业竞争格局及投资战略研究报告
- 2025-2030年中国隔音玻璃产业运营状况与发展潜力分析报告
- 2025-2030年中国链锯行业十三五规划与发展趋势预测报告
- 2025-2030年中国资产管理行业运行动态与营销策略研究报告
- 2025-2030年中国聚苯醚行业风险评估规划分析报告
- 南宁理工学院《美国文学选读》2023-2024学年第二学期期末试卷
- 邢台医学高等专科学校《生态文明建设理论与实践前沿》2023-2024学年第二学期期末试卷
- 江西科技学院《公共管理与服务课程开发与教材分析》2023-2024学年第二学期期末试卷
- 赣南师范大学科技学院《海报设计(数字方向)》2023-2024学年第二学期期末试卷
- 2025安徽省安全员知识题库及答案
- 金波读书乐课件
- 静脉治疗输液工具的选择2024课件
- KTV常见飞单方法
- 2024肥胖症诊疗指南亮点内容解读课件
- 课程设计存在问题和建议
- 四川蜀道集团笔试题
- 耐甲氧西林肺炎链球菌(MRSP)的流行病学和分子流行病学
- DBJ50-T-420-2022建设工程配建5G移动通信基础设施技术标准
- 2023年全国职业院校技能大赛-健身指导赛项规程
- 年“春节”前后安全自查系列用表完整
- 青岛版三年级下册口算题大全(全册)
评论
0/150
提交评论