




全文预览已结束
付费下载
VIP免费下载
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AMathematicalModelfortheMechanicalEtchingofGlassJ.H.M.tenThijeBoonkkampTechnischeUniversiteitEindhoven,DepartmentofMathematicsandComputerSciencetenthijewin.tue.nlSummary.Anonlinearfirst-orderPDEdescribingthedisplacementofaglasssur-facesubjecttosolidparticleerosionispresented.Theanalyticalsolutionisderivedbymeansofthemethodofcharacteristics.Alternatively,theEngquist-Osherschemeisappliedtocomputeanumericalsolution.Keywords:solidparticleerosion,kinematiccondition,singlePDEoffirstorder,characteristic-stripequations,Engquist-Osherscheme1IntroductionSomemoderntelevisiondisplayshaveavacuumenclosure,thatisinternallysupportedbyaglassplate.Thisplatemaynothinderthedisplayfunction.Forthatreasonithastobeaccuratelypatternedwithsmalltrenchesorholessothatelectronscanmovefreelyfromthecathodetothescreen.Onemethodtomanufacturesuchglassplatesistocoveritwithanerosion-resistantmaskandblastitwithanabrasivepowder.InSection2wepresentanonlinearfirst-orderPDEmodellingthisso-calledsolidparticleerosionprocess.Next,inSection3,wepresenttheanalyticalsolutionusingthemethodofcharac-teristics.Alternatively,inSection4,webrieflydescribeanumericalsolutionprocedure.2MathematicalModelforPowderErosionInthissectionweoutlineamathematicalmodelforsolidparticleerosion,toproducethintrenchesinaglassplate;formoredetailssee4.Consideraninitiallyflatsubstrateofbrittlematerial,coveredwithaline-shapedmask.Weintroducean(x,y,z)-coordinatesystem,wherethe(x,y)-planecoincideswiththeinitialsubstrateandthepositivez-axisisdirectedAMathematicalModelfortheMechanicalEtchingofGlass387intothematerial.Acontinuousfluxofalumina(Al2O3)particles,directedinthepositivez-direction,hitsthesubstrateathighvelocityandremovesmaterial.Thepositionz=(x,t)ofthetrenchsurfaceattimetisgovernedbythekinematicconditiont+(x)f(x)=0,0x0,(1)wherexisthetransversecoordinateinthetrench,andwhere(x)istheparticlemassflux,whichwillbespecifiedlater.Thespatialvariablesandxarescaledwiththetrenchwidthandthetimetwithacharacteristictimeneededtopropagateasurfaceatnormalimpactoverthiswidth.Thefunctionf=f(p)in(1)isdefinedbyf(p):=parenleftbig1+p2parenrightbigk/2,(2)withkaconstant(2k4).Atheoreticalmodelpredictsthevaluek=7/3,3.Equation(1)issupplementedwiththefollowinginitialandboundaryconditions:(x,0)=0,0x0.(3b)Theboundaryconditionsin(3b)meanthatthetrenchcannotgrowattheendsx=0andx=1.3AnalyticalSolutionMethodWecanwriteequation(1)inthecanonicalformF(x,t,p,q):=q(x)parenleftbig1+p2parenrightbigk/2=0,(4)withp:=xandq:=t.Thesolutionof(4)canbeconstructedfromthefollowingIVPforthecharacteristic-stripequations1dxds=Fp=(x)kp(1+p2)k/2+1,x(0;)=,(5a)dtds=Fq=1,t(0;)=0,(5b)dds=pFp+qFq=(x)1+(k+1)p2(1+p2)k/2+1,(0;)=0,(5c)dpds=(Fx+pF)=prime(x)1(1+p2)k/2,p(0;)=0,(5d)dqds=(Ft+qF)=0,q(0;)=(),(5e)388J.H.M.tenThijeBoonkkampwheresandaretheparametersalongthecharacteristicsandtheinitialcurve,respectively.Notethatthesolutionof(5b)and(5e)istrivial,andwefindt(s;)=sandq(s;)=().Inordertomodelthefiniteparticlesize,whichmakesthatparticlesclosetothemaskarelesseectiveintheerosionprocess,weintroducetransi-tionregionsofthickness.Weassumethat(x)increasescontinuouslyandmonotonicallyfrom0attheboundariesofthetrenchto1atx=,1.Theparameterischaracteristicofthe(dimensionless)particlesizeandatypicalvalueis=0.1.Weadoptthesimplestpossiblechoicefor(x),i.e.,(x)=x/if0x,1ifx1,(1x)/if1x1.(6)Asaresultof(6),thegrowthrateofthesurfacepositionclosetothemaskissmallerthaninthemiddleofthehole.Since(0)=(1)=0,weobtainfrom(5)thesolutionsx(t;0)=(t;0)=0andx(t;1)=1,(t;1)=0,implyingthattheboundaryconditions(3b)forareautomaticallysatisfied.Byintroducingtransitionregions,wecreateintersectingcharacteristics.Therefore,thesolutionof(4)canonlybeaweaksolutionanditisanticipatedthatshockswillemergefromtheedgesx=andx=1.Letx=s,1(t)andx=s,2(t)denotethelocationoftheshocksattimetoriginatingatx=andx=1,respectively.Eachpoint(s,i(t),t)(i=1,2)ontheseshocksisconnectedtotwodierentcharacteristicsthatexistonbothsidesoftheshocks.Thespeedoftheseshocksisgivenbythejumpconditionds,idtp=(x)(1+p2)k/2,(i=1,2),(7)wherepdenotesthejumpofpacrosstheshock.Thus,wecandistinguishthefollowingfiveregionsinthe(x,t)-plane:thelefttransitionregion0x00.20.40.60.8100.10.20.30.40.50.60.70.80.91xtFig.1.Characteristicsandshocksof(5),for=0.1andk=2.33.AMathematicalModelfortheMechanicalEtchingofGlass389(region1),therighttransitionregion1x1(region2),theinteriordomainleftofthefirstshock(region3),theinteriordomainrightofthesecondshock(region4)andtheregionbetweenthetwoshocks(region5);seeFig.1.Note,thatthelocationoftheshocksdependsonthesolutionthrough(7).Wecanderivetheanalyticalsolutionof(5)intheregions1,3and5,coupledwithanumericalsolutionof(7).Thesolutionintheothertworegionfollowsbysymmetry;formoredetailssee4.TheresultsarecollectedinFig.2,whichgivesthesolutionforandpattimelevelst=0.0,0.1,.,1.0for=0.1andk=2.33.Thisfigurenicelydisplaysthefeaturesofthesolution:aslantedsurfaceinthetransitionregions,aflatbottomintheinteriordomainandacurvedsurfaceinbetween.Also,inwardlypropagatingshocksareclearlyvisible.00.20.40.60.8100.10.20.30.40.50.60.70.80.91x00.20.40.60.813210123xpFig.2.Analyticalsolutionforthesurfaceposition(left)anditsslope(right).Pa-rametervaluesare=0.1andk=2.33.4NumericalSolutionMethodAlternatively,wewillcomputeanumericalsolutionof(1).Tothatpurpose,wecoverthedomain0,1withcontrolvolumesVj=xj1/2,xj+1/2)ofequalsizex=xj+1/2xj1/2.LetxjbethegridpointinthecentreofVj.Furthermore,weintroducetimelevelstn=nt,withtbeingthetimestep.Letnjdenotethenumericalapproximationof(xj,tn).Afinitevolumenumericalschemefor(1)canbewritteninthegenericformn+1j=njt(xj)Fparenleftbigpnj1/2,pnj+1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省前黄中学2025届高三下学期二模适应性考试(二)语文试卷
- 2025保险公司合同管理制度规范
- 甘肃省天水市2024~2025学年 高一下册第三阶段测试(5月月考)数学试卷附解析
- 福建省龙岩市2024-2025学年高二下册第二次月考(3月)数学试卷附解析
- 安徽省六安市2024~2025学年 高二下册4月月考B班数学试卷附解析
- 2025届广东省中考二模数学试卷
- 虚实界限-青年亚文化在数字时代的抵抗性边界-洞察阐释
- 上海交通大学医学院附属瑞金医院招聘笔试真题2024
- 陕西延安“优师计划地方专项”师范毕业生招聘笔试真题2024
- 2025年古文字基础试题
- 剖宫产术后肠梗阻护理课件
- 木材加工安全知识讲座
- 国开电大+可编程控制器应用实训+形考任务1
- 社区糖尿病病例管理中的药物治疗优化策略
- 老年性眼病知识讲座
- 肺结核的诊疗与护理
- 16J934-3中小学校建筑设计常用构造做法
- 智能传感器系统(第二版)(刘君华)1-5章
- 大学生应急救护智慧树知到课后章节答案2023年下西安欧亚学院
- 《高中生物必修3课件:细胞分裂和遗传》
- GB 4806.7-2023食品安全国家标准食品接触用塑料材料及制品
评论
0/150
提交评论