已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本科毕业设计(论文)翻译外文参考文献译文及原文学院物理与光电工程学院专业光信息科学与技术年级班别2012级(2)班学号学生姓名指导教师2016年6月摘要采用高温固相法制备一系列的CA3PO42掺杂SM3,EU3和SM3EU3。观察其发光性能的光致发光辐射、激发光谱和衰变曲线。在波长403NM的激励下,CA3PO42SM3发出橘红色光和并且其主导峰处在602毫微,这是由于的SM3的G5/26H7/2过渡。CA3PO42EU3产生394NM源激励下的红光,并且在613NM处产生了最强峰中心,其中分配给5D0EU37F2过渡。从SM3能量转移到EU3CA3PO4研究证明其是通过偶极子四极相互作用机理的谐振型。某一临界距离的SM3EU3CA3PO42计算要135A。随着EU3掺杂含量的增加,能量转移效率(SM3EU3)衰变曲线逐渐增加到307。此外,CA3的发光颜色可以通过适当调整SM3相对添加剂成分从而调节PO42SM3,EU3/EU3。目录译文红色发光CA3PO42SM3,EU3荧光粉的发光性能和能量转移11引言12实验23结果和讨论231表征阶段232CA3PO42SM3PO42EU3,CA3PO42SM3,EU3的发光性能233CA3PO42从SM3到EU3的能量转移434CIE色度坐标64结论6原文LUMINESCENCEPROPERTIESANDENERGYTRANSFEROFAREDEMITTINGCA3PO42SM3,EU3PHOSPHOR71INTRODUCTION72EXPERIMENTAL73RESULTSANDDISCUSSION731PHASECHARACTERIZATION732LUMINESCENCEPROPERTIESOFCA3PO42SM3,CA3PO42EU3,CA3PO42SM3,EU3733ENERGYTRANSFERFROMSM3TOEU3INCA3PO42734CIECHROMATICITYCOORDINATES74CONCLUSIONS7译文红色发光CA3PO42SM3,EU3荧光粉的发光性能和能量转移1引言近年来,白色发光二极管WLED作为一种绿色照明光源预计将取代传统的白炽灯和荧光灯灯管。原因是其拥有高效、节能、环保、寿命长13其优点。有主要有三种方法来制造白光发光二极管4,5。第一种方法是结合蓝筹的黄色发光荧光粉YAGCE3460毫微米。尽管如此,白色的光产生的蓝色LED和黄色荧光粉有很多缺陷,例如缺乏红光组件在其光谱组成和低颜色呈现指数。第二种方法是结合蓝色、绿色和红色的指示灯。但这种方式不同的LED器件的发光亮度改变不同随着温度的升高,造成颜色坐标漂移的混合白色的光。第三种方法是使用NUVLED的蓝色、绿色和红色荧光粉的激发或蓝色的LED。两个前一方法的比较,第三种方法应该是最高级的方式来实现高性能的WLED。目前,最常见的红色荧光粉白光LED是Y2O2SEU3,其中效率还不如比那些绿色和蓝色荧光粉6。而且在此基础上,Y2O2SEU3也是化学性质不稳定,其生存期是不足以NUV或蓝色光激发7。因此,迫切需要开拓新的红色荧光粉具有高效率、优异的化学稳定性,提高效率的光转换和WLED的寿命。他们之间有很多稀土离子,例如三价铕(EU3)离子是众所周知的好的红色激活剂,在许多矩阵由于5D07FJJ1,2,3)转换的EU3实例SR7锆PO46EU389BANB2O6EU3BA2GD8SIO46O2EU310、11Y2MOO6EU3和NACABO3EU312。但这些与EU3掺杂的荧光粉,来自EU3FF跃迁激发峰位于NUV地区,太锋利,涵盖NUVLED395405NM的排放。为提高NUV吸收和加强EU3离子,SM3离子的排放强度通常纳入EU3掺杂荧光粉增敏剂,如SR3LAPO43SM3,EU33,SRIN2O4SM3,EU313,CAWO4SM3,EU314,Y5MO2O12SM3,EU315,CA2BO3CLSM3,EU316等。在这些EU3SM3系统,EU3激发波长范围,可以有效拓宽了,由于从SM3到EU3能量传递。在矩阵的有关材料,磷酸化合物与M3的一般公式PO42MCA,SR,BA为基体材料,稀土离子掺杂荧光粉1724引起人们的关注。例如,发光特性的活化剂在CA3PO42EU317,CA3PO42SM318CA1XBA3PO42EU219,SR3BA3级PO42EU2PO42EU220报道。能量转移的活化剂在CA3PO42PR3,GD321,CA3PO42EU2,MN222进行了研究。然而,就我们所知,那里已没有记录的研究关于SM3和EU3CA3之间能量的转移PO42,因此,我们合成了CA3PO42SM3,EU3,并研究了它的能量转移和发光。2实验一系列的CA3PO42SM3固相反应合成了EU3发光材料。CA3XYPO42XEU3,YSM3CACO3名义组成AR(分析试剂),C995,NH42HPO4AR,C99,为原料采用EU2O39999和SM2O39999。原材料被化学计量学称了并且彻底碾碎为1H在玛瑙研钵中。然后,混合物被装入刚玉坩埚,并在1200C4小时在正常大气压下的管式炉烧结。冷却后,所有样本都均再次地面在玛瑙研钵,以获得样品产品精细粉末的形式。X射线衍射XRD模式被收集的X射线粉末衍射谱XRD用铜KA辐射的X射线衍射仪K15406A在36KV管电压和20马管电流,与0022H范围从10TO扫描步长70。光致发光谱PL和衰变曲线的所有样品录使用日立F7000荧光分光光度计(东京)作为激励源配备氙灯150W。这两个狭缝宽度的激发和发射性能是25毫微米和扫描速度是每分钟400V工作电压下1200NM。在室温下进行了所有测量。3结果和讨论31表征阶段XRD图谱为CA3CA3PO42EU3PO42SM3和CA3PO42SM3,EU3测量和类似衍射曲线观察从这些样品。作为代表,图1展品XRD的样品CA3PO42001SM3,CA3PO42001SM3和CA3PO42001SM3,012EU3。根据JCPDS卡号090169,发现衍射峰的位置,要与CA3区的菱形结构完全挂钩PO4与细胞参数2B104352A,C374029A,属于空间群R3C167。它表明,所得的样品单阶段和SM3可以轻松地介绍了EU3离子取代CA2格位于CA3PO42。32CA3PO42SM3PO42EU3,CA3PO42SM3,EU3的发光性能图2展示的SM3的激发光谱和EU3单独掺杂CA3PO42和SM3和EU3共掺杂CA3PO42。在SM3仅掺杂CA3PO42,激发光谱监测4G5/24H7/2602NM过渡的SM3包括一系列的锋利的线条从300到450毫微米,归于的SM3FF特征过渡。最强的吸收峰CA3PO42001SM3磷位于403NM的是从6H5/24F7/2过渡的SM3离子、345、362、375、390其他弱峰,417和439NM对应的6H5/24H9/2,4D3/2,4D1/2,4L15/2的电子跃迁(6P,4P)5/2和4G9/225。在EU3单独掺杂样品,激发光谱监测在613毫微米(5D07F2)EU3包含几个狭窄行源自EU3离子,内4F过渡和394高峰NM是实力最强,这是由于7F05L6过渡EU326。通过这些光谱对比两个单掺杂的样品,可以发现SM3具有很强的吸收约403毫微米,而EU3掺杂的样品在这支乐队不能有效激发。因此,SM3被认为能被用于扩大和加强吸收约403毫微米为EU3掺杂样品。基于这一考虑,SM3和EU3共掺CA3PO42样品被合成并研究了其发光性能。图2C说明了激励谱的CA3PO42001SM3,004EU3磷监测在613的EU3NM。可以看到的是EU3激发光谱形状单独掺杂样品和SM3和EU3共掺杂的样品基本上是相同的但在一些细节上有所不同。首先,为SM3和EU3共掺杂的样品,在约403励磁乐队NM是加强和扩大在一定程度上与EU3单独掺杂样品相比,图2C插图中所示。这种变化应归因于6H5/24F7/2过渡的SM37F0与重叠的EU35L6过渡。即是说,对于EU3掺杂样品,吸收大约400毫微米可以增强和扩大的SM3介绍,该属性只是便于申请NUVLED荧光粉。其次,励磁顶峰345NM归因于过渡的SM36H5/24H9/2可以检测到在CA3PO42001SM3,004EU3样品监测613NM的EU3,没有观察到的激发光谱的CA3PO42004EU3。这些现象表明,SM3离子可以有效地吸收将能量转移到EU3离子。发射光谱的SM3或EU3单独掺杂CA3PO42和SM3EU3双掺CA3PO42在不同的泵浦波长下测量并显示在图3中。发射光谱的SM3单独掺杂CA3PO4在激励下的SM32403NM包含的SM3典型转换18,25G5/264H5/2562、567NM、4G5/26H72602毫微米和G5/264H9/2647NM所示,在图3A,602高峰NM是最强。发射光谱的EU3单独掺杂CA3PO42在394NM励磁(见图3B)展品知名5D07FJJ0,1,2发射谱线的EU3J为最强烈的发射与在6132毫微米,表明EU3占有没有反演对称性网站26。位于周围590和613毫微米的乐队来自5D07F1、5D07F2过渡的EU3分别812,17。为了进一步了解SM3和EU3,SM3发射谱之间的能量转移EU3共掺CA3PO42393辐照后EU3和403NMNM的SM3进行了测量和分别列于图3C,D。发射光谱的SM3EU3共掺CA3PO42393NM激励下的(见图3C)发现,是一样的EU3单独掺杂样品,显示那SM3不能由394兴奋NM和没有能量转移发生从EU3SM3。虽然双掺杂的样品辐照到4F7/2级的SM3403NM,荧光EU3和SM3可以观察到(见图3D)。这是从SM3到EU3能量传递的征兆。另一种不明显现象观察图3D是,5D17F1排放EU3变得很弱,几乎无法察觉时激动起来由403毫微米。因此,能量传递的途径是从4G5/2的SM35D0的EU3,而不是5D1级别。此外,从图4D,它可以清晰可见的5D07F2为EU3单独掺杂样品的发光强度是远远低于EU3离子的SM3EU3共掺杂的样品。发光获取提高纳入SM3CA3PO42EU3和CA3区的发光强度PO42001SM3,004EU3是约三倍,比CA3PO42004EU3403NM激励下的。以上结果演示从SM3有效的能量转移到EU3发生在CA3PO42SM3,EU333CA3PO42从SM3到EU3的能量转移为了研究从SM3能量转移到EU3,发射光谱的CA3PO42XSM3,004EU3X001005403NM激励下的样本记录,图4所示。EU3固定在004浓度被指文学17。结果表明特征发射系SM3和EU3观察在发射谱的所有样品。当EU3掺杂浓度固定的时排放强度的SM3和EU3首先随着SM3浓度的增加而增加,并达到最大值在X003,然后减少单调由于SM3的浓度猝灭。因此,SM3和EU3排放强度具有相同的变化趋势,当SM3含量增加从001到005。显然,EU3排放强度的变化应源自SM3,进一步证实了向EU3从SM3转让能源。此外,发射光谱的样品CA3PO42001SM3,YEU3Y0016也记录和图5中所示。在激励下的403NM,SM3排放被发现与EU3掺杂内容从0增加到016排放强度的EU3最初增加而达到极大值在X单调递减012,又出现下降趋势,当EU3离子含量超过012由于EU3EU3内部的浓度猝灭。这一事实表明,SM3可以一些吸收将能量转移到EU3,导致其自身发光强度下降和高效的红光发射,与EU3。基于以上分析,对非辐射能量转移示意图流程从SM3到EU3CA3PO42主机如图6所示。当SM3兴奋由403NMNUV光中时,电子在基态可以注入4F7/2水平。激发的电子可以放松非跃迁到最低兴奋水平4G5/2和球型跳转到基态(6H5/2、6H7/2和6H9/2)导致特征发射的SM3(见图3A)。此外,可以看到的SM34的G5/2能级是接近5D0能量水平的EU3,铺平了道路为能量转移从4G5/2水平的SM35D0水平的EU327两个能级之间的共振。从SM3能量转移到EU3是几乎不可逆的(见图3),因为能源的SM34G5/2水平与EU35D0水平之间的差距很小(大约600厘米1发射声子的SM3机会4G5/2EU35D0过程是高于EU3捕获声子5D0SM34G5/2进程36,28。因此,发射谱的CA3PO42SM3,EU3证明从SM3能量转移到EU3是有效为了进一步澄清是否存在SM3和EU3之间的能量转移,生存期的SM3进行调查。光致发光衰减曲线的SM3CA3PO42001SM3,YEU3Y0016荧光粉兴奋在403毫微米和监测在602NM入账,代表部分介绍了在图7中。衰变曲线可以配备一个单一的指数函数,如下图所示我是发光强度的时间T,I0是常数S是发光寿命T是时间。衰减时间S计算的非线性曲线拟合和表1所示。从表1,它可以清晰可见,随着EU3掺杂的增加,一生的单调从2369SM3离子减少到1642女士这一结果强烈表明能量转移的发生从SM3对EU3离子。可以使用以下公式29计算能量转移效率GT从SM3对EU3离子SS和SS0SM3离子的存在的衰变寿命和哪里没有EU3。中表1还列出了能量转移效率GT从SM3到EU3依赖EU3浓度的计算的结果。GT的CA3PO42001SM3,YEU3发现随着EU3掺杂含量的增加而增加,最大能量转移效率从SM3到EU3是307。一般来说,从SM3到EU3能量传递的意义取决于强烈SM3和EU3离子之间的距离。某一临界距离RSM欧盟之间SM3和EU3可以粗略估计,由下面的公式,提出了BLASSE30。V在哪里的晶胞体积,XC是样品的临界浓度即SM3和EU3离子的排放强度的SM3是样品的一半在没有EU3,Z是样品的中心阳离子的单元数目的总浓度。为主机CA3PO42,Z21,V352726A317和结晶度是实验要从总和的SM3013001和EU3012。情商3,能量转移的临界距离预计将约135A为CA3PO42001SM3,YEU3,要远远大于典型的临界距离交流互动5A3。这一结果表明,交换相互作用的机理作用没有能量传递过程中为CA3PO42001SM3、YEU3荧光粉。因此,SM3和EU3之间的能量转移发生在CA3PO42001SM3,YEU3和5D07F2排放EU3促进高效能源转移SM3到EU3,属于多极互动。德克斯特的能量传递公式,多极互动和REISFELD的逼近,关系可以得到以下公式32,33在G0和G的SM3的荧光量子效率中的缺席与在场的EU3分别代表因子C是掺杂含量的EU3离子不同的N值指示从SM3到EU3能量传递不同电多极互动机制。N的值等于6、8和10分别对应于偶极偶极子、偶极子四极、四极四极相互作用。G0/G式4中的值可以从相关的排放强度大约估计IS0/是34,35因此,式4可以修改由方程如下IS0/与CN/3曲线对应于N6,8和10绘制在图8中。它很容易可以看出最优线性行为观察到,当N8,暗示从SM3的能量转移机理到EU3CA3PO42是通过偶极子四极相互作用,这是类似于文献36,37中那些结果。34CIE色度坐标表2描述了CIE色度的CA3PO42001SM3、YEU3Y0016荧光粉计算相应的发射谱激动403毫微米。EU3浓度的增加,样品的CIE(X,Y)坐标系统转移到标准的红色色度(067,033)国家电视标准委员会NTSC系统,这可能归因于日益增加的能量转移从SM3离子。这表明,CA3PO42SM3,EU3可以作为潜在的红色发光荧光粉的NUV指示灯。4结论总之,SM3EU3单掺杂及共掺杂CA3PO4固相反应合成了2发光材料,在室温下研究了紫外光激发其光致发光特性。从SM3能量转移到EU3CA3PO42SM3,EU3已经被证明,和能量转移效率(SM3EU3)逐渐增加从0到307随着EU3掺杂浓度为0016。此外,某一临界距离RC的SM3对EU3离子的CA3PO42计算要135A。能量转移的机制也证明了要通过偶极子四极相互作用的谐振型。排放强度的CA3PO42EU3可以显著增强由掺杂SM3和CA3的CIE(X,Y)坐标PO42001SM3,YEU3系统转移到标准的红色色度(067,033)与EU3含量的增加。这些结果表明CA3PO42SM3,EU3可以是有前途的红色发光荧光粉NUV基于白光LED。原文LUMINESCENCEPROPERTIESANDENERGYTRANSFEROFAREDEMITTINGCA3PO42SM3,EU3PHOSPHORASERIESOFSM3,EU3ANDSM3EU3DOPEDCA3PO42WEREPREPAREDBYAHIGHTEMPERATURESOLIDSTATEMETHODTHEIRLUMINESCENTPROPERTIESWERESTUDIEDBYPHOTOLUMINESCENCEEMISSION,EXCITATIONSPECTRAANDDECAYCURVESUNDEREXCITATIONWITHAWAVELENGTHAT403NM,CA3PO42SM3EMITSREDORANGELIGHT,ANDTHEDOMINATEDPEAKSITUATESAT602NMWHICHISDUETOTHE4G5/26H7/2TRANSITIONOFSM3CA3PO42EU3PRODUCESREDLIGHTUNDERTHE394NMEXCITATION,ANDTHESTRONGESTPEAKCENTERSAT613NM,WHICHISASSIGNEDTO5D07F2TRANSITIONOFEU3THEENERGYTRANSFERFROMSM3TOEU3INCA3PO42HOSTHASBEENSTUDIEDANDDEMONSTRATEDTOBEARESONANTTYPEVIAADIPOLEQUADRUPOLEINTERACTIONMECHANISMTHECRITICALDISTANCEOFSM3EU3INCA3PO42ISCALCULATEDTOBE135AWITHTHEINCREASEOFEU3DOPINGCONTENT,THEENERGYTRANSFEREFFICIENCYSM3EU3OBTAINEDFROMDECAYCURVESGRADUALLYINCREASESTO307MOREOVER,THEEMITTINGCOLOROFCA3PO42SM3,EU3CANBETUNEDBYAPPROPRIATELYADJUSTINGTHERELATIVEDOPINGCOMPOSITIONOFSM3/EU31INTRODUCTIONINRECENTYEARS,WHITELIGHTEMITTINGDIODESWLEDASAKINDOFGREENLIGHTINGSOURCEAREEXPECTEDTOREPLACETHETRADITIONALINCANDESCENTANDFLUORESCENTLAMPDUETOTHEIRADVANTAGESOFHIGHEFFICIENCY,ENERGYSAVING,ENVIRONMENTALPROTECTIONANDLONGSERVICELIFE13THEREAREMAINLYTHREEMETHODSTOFABRICATEWHITELEDS4,5THEFIRSTWAYISTOCOMBINEAYELLOWEMITTINGPHOSPHORYAGCE3WITHABLUECHIP460NMNONETHELESS,WHITELIGHTPRODUCEDBYBLUELEDANDYELLOWPHOSPHORSHASMANYDEFECTS,FOREXAMPLETHELACKOFREDLIGHTCOMPONENTINITSSPECTRALCOMPOSITIONANDLOWCOLORRENDERINDEXTHESECONDWAYISTOCOMBINEBLUE,GREENANDREDLEDSBUTINTHISWAYTHELUMINESCENCEBRIGHTNESSOFDIFFERENTLEDDEVICESCHANGESDIFFERENTLYWITHTEMPERATUREINCREASING,CAUSEDBYTHECOLORCOORDINATESDRIFTINGOFMIXINGWHITELIGHTTHETHIRDAPPROACHISTOEXCITEBLUE,GREENANDREDPHOSPHORSUSINGANUVLEDORBLUELEDCOMPARISONOFTWOPREVIOUSMETHODS,THETHIRDAPPROACHSHOULDBETHEMOSTSUPERIORWAYTOACHIEVEHIGHPERFORMANCEWLEDSATPRESENT,THEMOSTCOMMONLYSEENREDPHOSPHORFORWHITELEDSISY2O2SEU3,THEEFFICIENCYOFWHICHISSTILLINFERIORTHANTHOSEOFGREENANDBLUEPHOSPHOR6MOREOVER,Y2O2SEU3ISALSOCHEMICALLYUNSTABLEANDITSLIFETIMEISINSUFFICIENTUNDERNUVORBLUELIGHTEXCITATIONS7SO,ITISDESPERATELYNEEDEDTOEXPLOITANEWREDPHOSPHORWITHHIGHEFFICIENCYANDEXCELLENTCHEMICALSTABILITYTOIMPROVETHEEFFICIENCYOFLIGHTCONVERSIONANDLIFETIMEINWLEDSAMONGMANYRAREEARTHIONS,THETRIVALENTEUROPIUMEU3IONISWELLKNOWNASAGOODREDACTIVATORINMANYMATRICESDUETOTHE5D07FJJ1,2,3TRANSITIONSOFEU3,FORINSTANCESR7ZRPO46EU38,BANB2O6EU39,BA2GD8SIO46O2EU310,Y2MOO6EU311ANDNACABO3EU312BUTFORTHOSEPHOSPHORSDOPEDWITHEU3,THEEXCITATIONPEAKSDERIVEDFROMTHEFFTRANSITIONSOFEU3LOCATEATNUVREGION,WHICHISTOOSHARPTOCOVERTHEEMISSIONOFNUVLED395405NMFORTHEPURPOSEOFIMPROVINGTHENUVABSORPTIONANDENHANCINGTHEEMISSIONINTENSITYOFEU3ION,THESM3IONISUSUALLYINCORPORATEDINTOEU3DOPEDPHOSPHORSASASENSITIZER,SUCHASSR3LAPO43SM3,EU33,SRIN2O4SM3,EU313,CAWO4SM3,EU314,Y5MO2O12SM3,EU315,CA2BO3CLSM3,EU316,ETCINTHESEEU3/SM3SYSTEM,THEEXCITATIONWAVELENGTHRANGEOFEU3CANBEEFFECTIVELYBROADENEDOWINGTOTHEENERGYTRANSFERFROMSM3TOEU3ASFARASTHEMATRIXMATERIALSARECONCERNED,PHOSPHATECOMPOUNDSWITHTHEGENERALFORMULAM3PO42MCA,SR,BAHAVEATTRACTEDWIDESPREADATTENTIONASMATRIXMATERIALSFORRAREEARTHIONSDOPEDPHOSPHORS1724FOREXAMPLE,THELUMINESCENTPROPERTIESOFACTIVATORSINCA3PO42EU317,CA3PO42SM318,CA1XBA3PO42EU219,SR3PO42EU2,BA3PO42EU220AREREPORTEDTHEENERGYTRANSFEROFACTIVATORSINCA3PO42PR3,GD321,CA3PO42EU2,MN222WEREALSOINVESTIGATEDHOWEVER,ASFARASWEKNOW,THEREHASBEENNORECORDEDRESEARCHABOUTTHEENERGYTRANSFERBETWEENSM3ANDEU3INCA3PO42,HENCE,WESYNTHESIZEDCA3PO42SM3,EU3,ANDINVESTIGATEDITSENERGYTRANSFERANDLUMINESCENCE2EXPERIMENTALASERIESOFCA3PO42SM3/EU3PHOSPHORSWERESYNTHESIZEDBYSOLIDSTATEREACTIONACCORDINGTOTHENOMINALCOMPOSITIONSOFCA3XYPO42XEU3,YSM3,CACO3ARANALYTICALREAGENT,C995,NH42HPO4AR,C99,EU2O39999ANDSM2O39999WEREEMPLOYEDASRAWMATERIALSTHERAWMATERIALSWERESTOICHIOMETRICALLYWEIGHEDANDTHOROUGHLYMILLEDFOR1HINANAGATEMORTARTHEN,THEMIXTUREWASLOADEDINTOCORUNDUMCRUCIBLE,ANDSINTEREDAT1200CFOR4HINATUBULARFURNACEATNORMALATMOSPHERICPRESSUREAFTERCOOLING,ALLSAMPLESWEREAGAINGROUNDINANAGATEMORTARTOOBTAINSAMPLEPRODUCTSINTHEFORMOFFINEPOWDERSTHEXRAYDIFFRACTIONXRDPATTERNSWERECOLLECTEDBYXRAYPOWDERDIFFRACTIONSPECTROSCOPYXRDUSINGANXRAYDIFFRACTOMETERWITHCUKAIRRADIATIONK15406AAT36KVTUBEVOLTAGEAND20MATUBECURRENT,WITHASCANNINGSTEPOF002INTHE2HRANGEFROM10TO70THEPHOTOLUMINESCENCEPLANDDECAYCURVESOFALLTHESAMPLEWERERECORDEDUSINGAHITACHIF7000FLUORESCENTSPECTROPHOTOMETERTOKYOEQUIPPEDWITHAXENONLAMP150WASEXCITATIONSOURCEBOTHSLITWIDTHSOFEXCITATIONANDEMISSIONWERE25NMANDTHESCANNINGRATEWAS1200NMPERMINUTEUNDERAWORKINGVOLTAGEOF400VALLMEASUREMENTSWERECARRIEDOUTATROOMTEMPERATURE3RESULTSANDDISCUSSION31PHASECHARACTERIZATIONTHEXRDPATTERNSFORCA3PO42EU3,CA3PO42SM3,ANDCA3PO42SM3,EU3AREMEASUREDANDSIMILARDIFFRACTIONCURVESAREOBSERVEDFROMTHESESAMPLESASAREPRESENTATIVE,FIG1EXHIBITSTHEXRDPATTERNSOFSAMPLESCA3PO42001SM3,CA3PO42001SM3ANDCA3PO42001SM3,012EU3ACCORDINGTOTHEJCPDSCARDNO090169,THEPOSITIONSOFTHEDIFFRACTIONPEAKSAREFOUNDTOBEEXACTLYINDEXEDTOTHERHOMBOHEDRALSTRUCTUREOFCA3PO42WITHCELLPARAMETERSAB104352A,C374029A,WHICHBELONGSTOTHESPACEGROUPR3C167ITINDICATESTHATTHEOBTAINEDSAMPLESARESINGLEPHASEANDSM3/EU3IONSCANBEEASILYINTRODUCEDTOSUBSTITUTETHECA2LATTICESITEINCA3PO4232LUMINESCENCEPROPERTIESOFCA3PO42SM3,CA3PO42EU3,CA3PO42SM3,EU3FIGURE2EXHIBITSTHEEXCITATIONSPECTRAOFSM3ANDEU3SINGLYDOPEDCA3PO42ANDSM3ANDEU3CODOPEDCA3PO42INTHESM3SOLELYDOPEDCA3PO42,THEEXCITATIONSPECTRUMMONITORINGTHE4G5/24H7/2602NMTRANSITIONOFSM3CONSISTSOFASERIESOFSHARPLINESRANGINGFROM300TO450NM,WHICHAREASCRIBEDTOTHEFFCHARACTERISTICTRANSITIONOFSM3THESTRONGESTABSORPTIONPEAKOFCA3PO42001SM3PHOSPHORLOCATESAT403NMWHICHISFROMTHE6H5/24F7/2TRANSITIONOFSM3IONS,OTHERWEAKERPEAKSAT345,362,375,390,417AND439NMARECORRESPONDINGTOTHEELECTRONICTRANSITIONSOF6H5/24H9/2,4D3/2,4D1/2,4L15/2,6P,4P5/2AND4G9/225INTHEEU3SINGLYDOPEDSAMPLE,THEEXCITATIONSPECTRUMMONITORINGAT613NM5D07F2OFEU3CONSISTSOFSEVERALNARROWLINESDERIVEDFROMTHEINTRA4FTRANSITIONSOFEU3ION,ANDTHEPEAKAT394NMISSTRONGEST,WHICHISDUETOTHE7F05L6TRANSITIONOFEU326THROUGHTHESPECTRALCONTRASTOFTHESETWOSINGLEDOPEDSAMPLES,ITCANBEFOUNDTHATSM3HASASTRONGABSORPTIONAROUND403NM,WHILETHEEU3DOPEDSAMPLEINTHISBANDCANNOTBEEFFECTIVELYEXCITEDTHEREFORE,SM3ISCONSIDEREDTOBEEMPLOYEDTOBROADENANDENHANCEABSORPTIONAROUND403NMFOREU3DOPEDSAMPLEBASEDONTHISCONSIDERATION,THESM3ANDEU3CODOPEDCA3PO42SAMPLESWERESYNTHESIZEDANDTHEIRLUMINESCENTPROPERTIESWERESTUDIEDFIGURE2CILLUSTRATESTHEEXCITATIONSPECTRUMOFCA3PO42001SM3,004EU3PHOSPHORMONITORINGAT613NMOFEU3ITCANBESEENTHATTHEEXCITATIONSPECTRALSHAPESOFEU3SINGLYDOPEDSAMPLEANDSM3ANDEU3CODOPEDSAMPLEAREBASICALLYTHESAME,BUTDIFFERINSOMEDETAILSFIRSTLY,FORTHESM3ANDEU3CODOPEDSAMPLE,THEEXCITATIONBANDATAROUND403NMISWIDENEDANDSTRENGTHENEDINACERTAINDEGREECOMPAREDTOEU3SINGLYDOPEDSAMPLEASSHOWNINTHEINSETOFFIG2CTHISCHANGESHOULDBEATTRIBUTEDTOTHE6H5/24F7/2TRANSITIONOFSM3OVERLAPPEDWITHTHE7F05L6TRANSITIONOFEU3THATISTOSAY,FOREU3DOPEDSAMPLE,THEABSORPTIONAROUND400NMCANBEENHANCEDANDBROADENEDBYTHEINTRODUCTIONOFSM3,THISPROPERTYJUSTFACILITATESTHEPHOSPHORFORAPPLICATIONOFNUVLEDSECONDLY,AEXCITATIONPEAKAT345NMATTRIBUTEDTOTHE6H5/24H9/2TRANSITIONOFSM3CANBEDETECTEDINCA3PO42001SM3,004EU3SAMPLEBYMONITORINGTHE613NMOFEU3,WHICHISNOTOBSERVEDINTHEEXCITATIONSPECTRAOFCA3PO42004EU3THESEPHENOMENASHOWTHATSM3IONSCANEFFECTIVELYABSORBANDTRANSFERENERGYTOTHEEU3IONSTHEEMISSIONSPECTRAOFSM3OREU3SINGLYDOPEDCA3PO42ANDSM3/EU3DOUBLYDOPEDCA3PO42UNDERDIFFERENTPUMPWAVELENGTHWEREMEASUREDANDDISPLAYEDINFIG3THEEMISSIONSPECTRUMOFSM3SINGLYDOPEDCA3PO42UNDEREXCITATIONOFSM3403NMCONSISTSOFTYPICALTRANSITIONSOFSM318,254G5/26H5/2562,567NM,4G5/26H7/2602NMAND4G5/26H9/2647NM,ASSHOWNINFIG3A,THEPEAKAT602NMISTHESTRONGESTTHEEMISSIONSPECTRUMOFEU3SINGLYDOPEDCA3PO42AT394NMEXCITATIONSEEFIG3BEXHIBITSTHEWELLKNOWN5D07FJJ0,1,2EMISSIONLINESOFEU3WITHTHEMOSTINTENSEEMISSIONFORJ2AT613NM,INDICATEDTHATEU3OCCUPIESNOINVERSIONSYMMETRYSITES26THEBANDSLOCATEDAROUND590AND613NMCOMEFROMTHE5D07F1,5D07F2TRANSITIONSOFEU3,RESPECTIVELY812,17INORDERTOFURTHERUNDERSTANDTHEENERGYTRANSFERBETWEENSM3ANDEU3,THEEMISSIONSPECTRAOFSM3/EU3CODOPEDCA3PO42IRRADIATEDAT393NMOFEU3AND403NMOFSM3WEREMEASUREDANDPRESENTEDINFIG3C,DRESPECTIVELYTHEEMISSIONSPECTRUMOFSM3/EU3CODOPEDCA3PO42UNDER393NMEXCITATIONSEEFIG3CISFOUNDTOBETHESAMEASTHATOFEU3SINGLYDOPEDSAMPLE,DISPLAYINGTHATSM3CANNOTBEEXCITEDBY394NMANDNOENERGYTRANSFEROCCURSFROMEU3TOSM3WHILETHEDOUBLYDOPEDSAMPLEISIRRADIATEDINTOTHE4F7/2LEVELOFSM3AT403NM,BOTHTHEFLUORESCENCEOFEU3ANDSM3CANBEOBSERVEDSEEFIG3DTHISISTHEINDICATIONOFENERGYTRANSFERFROMSM3TOEU3ANOTHERUNCONSPICUOUSPHENOMENONOBSERVEDINFIG3DISTHAT5D17F1EMISSIONOFEU3BECAMEVERYWEAK,ALMOSTUNDETECTABLEWHENEXCITEDBY403NMTHEREFORE,THEPATHWAYOFENERGYTRANSFERISFROM4G5/2OFSM3TOTHE5D0OFEU3RATHERTHAN5D1LEVELMOREOVER,FROMFIG4D,ITCANBESEENCLEARLYTHATTHELUMINESCENCEINTENSITYOF5D07F2FOREU3SINGLYDOPEDSAMPLEISMUCHLOWERTHANTHATOFEU3IONSINTHESM3/EU3CODOPEDSAMPLETHELUMINESCENCEGETSIMPROVEDDUETOINCORPORATIONOFSM3INCA3PO42EU3ANDTHELUMINESCENCEINTENSITYOFCA3PO42001SM3,004EU3ISABOUTTHREETIMESSTRONGERTHANCA3PO42004EU3UNDER403NMEXCITATIONALLTHEABOVERESULTSDEMONSTRATETHATTHEEFFICIENTENERGYTRANSFERFROMSM3TOEU3OCCURSINCA3PO42SM3,EU333ENERGYTRANSFERFROMSM3TOEU3INCA3PO42INORDERTOSTUDYTHEENERGYTRANSFERFROMSM3TOEU3,THEEMISSIONSPECTRAOFTHECA3PO42XSM3,004EU3X001005SAMPLESUNDER403NMEXCITATIONWERERECORDEDANDSHOWNINFIG4THECONCENTRATIONOFEU3FIXEDAT004WASREFERREDTOLITERATURE17THERESULTSSHOWTHATBOTHTHECHARACTERISTICEMISSIONLINESOFSM3ANDEU3AREOBSERVEDINTHEEMISSIONSPECTRAOFALLSAMPLESWHENEU3DOPINGCONCENTRATIONISFIXED,THEEMISSIONINTENSITYOFSM3ANDEU3FIRSTLYINCREASESWITHTHEINCREASEOFSM3CONCENTRATIONANDACHIEVESTHEMAXIMUMATX003,THENDECREASESMONOTONICALLYASARESULTOFCONCENTRATIONQUENCHINGOFSM3HENCE,THESM3ANDEU3EMISSIONINTENSITYHASTHESAMECHANGETENDENCYWHENSM3CONTENTINCREASEDFROM001TO005CLEARLY,THEINTENSITYCHANGEOFEU3EMISSIONSHOULDBEDERIVEDFROMSM3,WHICHFURTHERCONFIRMSTHETRANSFEROFENERGYFROMSM3TOEU3FURTHERMORE,THEEMISSIONSPECTRAOFSAMPLESCA3PO42001SM3,YEU3Y0016AREALSORECORDEDANDSHOWNINFIG5UNDERTHEEXCITATIONOF403NM,THESM3EMISSIONSAREFOUNDTODECREASEMONOTONICALLYWITHTHEEU3DOPINGCONTENTSINCREASINGFROM0TO016WHILETHEEMISSIONINTENSITYOFTHEEU3INCREASESINITIALLYANDREACHESAMAXIMUMATX012,ANDTHENDECREASESWHENTHECONTENTOFEU3IONEXCEEDS012ASARESULTOFEU3EU3INTERNALCONCENTRATIONQUENCHINGTHISFACTINDICATESTHATSM3CANTRANSFERSOMEABSORBEDENERGYTOEU3,LEADINGTOTHEDECLINEOFITSOWNLUMINOUSINTENSITYANDHIGHLYEFFICIENTREDEMISSIONOFEU3BASEDONTHEANALYSISABOVE,THESCHEMATICDIAGRAMFORNONRADIATIVEENERGYTRANSFERPROCESSESFROMSM3TOEU3INCA3PO42HOSTISILLUSTRATEDINFIG6WHENSM3AREEXCITEDBY403NMNUVLIGHT,ELECTRONSINGROUNDSTATESCANBEPUMPEDINTOTHE4F7/2LEVELTHEEXCITEDELECTRONSCANRELAXNONRADIATIVELYTOTHELOWESTEXCITEDLEVEL4G5/2ANDJUMPTOGROUNDSTATES6H5/2,6H7/2AND6H9/2RADIATIVELYRESULTINGINTHECHARACTERISTICEMISSIONOFSM3SEEINFIG3AMOREOVER,ITCANBESEENTHATTHE4G5/2ENERGYLEVELOFSM3ISCLOSETOTHE5D0ENERGYLEVELOFEU3,WHICHPAVESTHEWAYFORENERGYTRANSFERFROM4G5/2LEVELOFSM3TO5D0LEVELOFEU3BYRESONANCEBETWEENTWOENERGYLEVELS27THEENERGYTRANSFERFROMSM3TOEU3ISALMOSTIRREVERSIBLESEEINFIG3,BECAUSETHEENERGYGAPBETWEENTHE4G5/2LEVELOFSM3ANDTHE5D0LEVELOFEU3ISSMALLABOUT600CM1,THECHANCEOFEMITTINGPHONONSFORTHESM34G5/2EU35D0PROCESSISHIGHERTHANTHATOFCAPTURINGPHONONSFORTHEEU35D0SM34G5/2PROCESS3,16,28HENCE,THEEMISSIONSPECTRAOFCA3PO42SM3,EU3DEMONSTRATETHATTHEENERGY
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保护耳朵教案及反思
- 配件风险管理策略
- 服装行业招投标违规责任追究
- 游戏厅装修施工合同
- 商业综合体砌体施工协议
- 公共安全管理办法释义
- 大型电力变电站施工合同
- 劳动争议处理策略研究
- 北京环保项目采购规定
- 污水处理工程招投标合同
- 2024年居间服务委托协议
- 2024年动迁房购买合同范本
- JJG 165-2024钟罩式气体流量标准装置检定规程
- 江西省萍乡市2024-2025学年高二上学期期中考试地理试题
- 江苏省南京市玄武区2024-2025学年七年级上学期期中考试英语试卷
- 新版加油站安全操作规程
- 2023年贵州黔东南州州直机关遴选公务员考试真题
- 货物质量保证措施方案
- 黑龙江省龙东地区2024-2025学年高二上学期阶段测试(二)(期中) 英语 含答案
- 4S店展厅改造装修合同
- 公务员2022年国考申论试题(行政执法卷)及参考答案
评论
0/150
提交评论