已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2008年普通高等学校招生全国统一考试(陕西卷)文科数学(必修+选修)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)1等于( B )ABCD解:2已知全集,集合,则集合( D )A B C D解:,所以3某林场有树苗30000棵,其中松树苗4000棵为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C )A30B25 C20D15解:设样本中松树苗的数量为,则4已知是等差数列,则该数列前10项和等于( B )A64B100C110D120解:设公差为,则由已知得5直线与圆相切,则实数等于( C )A或B或C或D或解:圆的方程,圆心到直线的距离等于半径或者6“”是“对任意的正数,”的( A )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件解:,显然也能推出,所以“”是“对任意的正数,”的充分不必要条件。7已知函数,是的反函数,若(),则的值为( D )A10B4C1D解:于是8长方体的各顶点都在半径为1的球面上,其中,则两点的球面距离为 ( C )ABCD解:设则即,在中,从而点的球面距离为9双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为( B )ABCD解:如图在中, , 10如图,到的距离分别是和,与所成的角分别是和,在内的射影分别是和,若,则( D )ABablABCD解:由勾股定理,又, ,,而,所以,得11定义在上的函数满足(),则等于( A ) A2B3C6D9解:令,令;令得12为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息设定原信息为(),传输信息为,其中,运算规则为:,例如原信息为111,则传输信息为01111传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( C )A11010B01100C10111D00011解:C选项传输信息110,应该接收信息10110。二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分)13的内角的对边分别为,若,则 解: 由正弦定理,于是14的展开式中的系数为 84 (用数字作答)解:,令,因此展开式中的系数为15关于平面向量有下列三个命题:若,则若,则非零向量和满足,则与的夹角为其中真命题的序号为(写出所有真命题的序号)解:,向量与垂直构成等边三角形,与的夹角应为所以真命题只有。16某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 96 种(用数字作答)解:分两类:第一棒是丙有,第一棒是甲、乙中一人有因此共有方案种三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分)17(本小题满分12分)已知函数()求函数的最小正周期及最值;()令,判断函数的奇偶性,并说明理由解:()的最小正周期当时,取得最小值;当时,取得最大值2()由()知又函数是偶函数18(本小题满分12分)一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.()连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;()如果摸出红球,则停止摸球,求摸球次数不超过3次的概率解:()从袋中依次摸出2个球共有种结果,第一次摸出黑球、第二次摸出白球有 种结果,则所求概率 ()第一次摸出红球的概率为,第二次摸出红球的概率为,第三次摸出红球的概率为,则摸球次数不超过3次的概率为 19(本小题满分12分)三棱锥被平行于底面的平面所截得的几何体如图所示,截面为,平面,A1AC1B1BDC()证明:平面平面;()求二面角的大小解:解法一:()平面平面,在中,又,即A1AC1B1BDCFE(第19题,解法一)又,平面,平面,平面平面()如图,作交于点,连接,由已知得平面是在面内的射影由三垂线定理知,为二面角的平面角过作交于点,则,在中,在中,即二面角为A1AC1B1BDCzyx(第19题,解法二)解法二:()如图,建立空间直角坐标系,则,点坐标为,又,平面,又平面,平面平面()平面,取为平面的法向量,设平面的法向量为,则,如图,可取,则,即二面角为20(本小题满分12分)已知数列的首项,()证明:数列是等比数列;()数列的前项和解:() , , ,又, 数列是以为首项,为公比的等比数列()由()知,即,设, 则,由得 ,又数列的前项和 21(本小题满分12分)已知抛物线:,直线交于两点,是线段的中点,过作轴的垂线交于点()证明:抛物线在点处的切线与平行;()是否存在实数使,若存在,求的值;若不存在,说明理由解:解法一:()如图,设,把代入得,xAy112MNBO由韦达定理得,点的坐标为设抛物线在点处的切线的方程为,将代入上式得,直线与抛物线相切,即()假设存在实数,使,则,又是的中点,由()知轴,又 ,解得即存在,使解法二:()如图,设,把代入得由韦达定理得,点的坐标为,抛物线在点处的切线的斜率为,()假设存在实数,使由()知,则,解得即存在,使22本小题满分14分)设函数其中实数()若,求函数的单调区间;()当函数与的图象只有一个公共点且存在最小值时,记的最小值为,求的值域;()若与在区间内均为增函数,求的取值范围解:() ,又, 当时,;当时,在和内是增函数,在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 交通运输行业劳务派遣方案
- 建筑智能化系统的施工合同客体是
- 债权市场投资风险防范
- 林业工程投标商务部分范例
- 2024年建筑给排水及采暖工程安全协议
- 2024大数据分析服务合同标的的具体描述
- 银行实习工作汇报范文(5篇)
- 实训室招投标合同模板
- 姓名样签写合同范例
- 厨房发包合同范例
- 国开(甘肃)2024年春《地域文化(专)》形考任务1-4终考答案
- 档案整理及数字化服务方案(技术标 )
- 静电粉末喷涂实用工艺
- 《十字绣》教学设计及反思
- 桥梁形象进度图
- C站使用说明JRC
- 习作:推荐一个好地方 推荐ppt课件
- 角的度量 华应龙(课堂PPT)
- 公路铣刨机整机的设计含全套CAD图纸
- 机器人学课程教学大纲
- 浙江世贸君澜酒店集团介绍
评论
0/150
提交评论