供应链企业利润分配新方法--基于修正Shapley值法和层次分析法的结合应用_第1页
供应链企业利润分配新方法--基于修正Shapley值法和层次分析法的结合应用_第2页
供应链企业利润分配新方法--基于修正Shapley值法和层次分析法的结合应用_第3页
供应链企业利润分配新方法--基于修正Shapley值法和层次分析法的结合应用_第4页
供应链企业利润分配新方法--基于修正Shapley值法和层次分析法的结合应用_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

供应链企业利润分配新方法-基于修正Shapley值法和层次分析法的结合应用宁波大学考核答题纸(20102011学年第 2 学期)课号: 课程名称:供应链管理专题 改卷教师: 熊伟清老师 学号: 姓 名: 吴 静 得 分: 供应链企业利润分配新方法-基于修正Shapley值法和层次分析法的结合应用摘 要:供应链企业伙伴利益的合理分配是支持供应链正常运行的一个重要条件,可以说“无利益不合作”。以往分配方法比较单一,本文考虑到企业承担风险情况的不同,以及投资额的大小、诚信指数与创新程度的高低对供应链企业运行的影响,提出的考虑权重的基于Shapley 值法的利益分配新方法,并通过实例分析了这一新方法的应用。关键词:供应链企业;Shapley值法;风险;创新程度;投资额;诚信指数1 供应链企业利润分配方法综述供应链企业是一种典型的利益驱动型组织模式,追求利益是使企业各方组建供应链的动机,可以说“无利益不合作”,但是利益分配的多少,权重,偏向等因素会影响到链内的健康运行。因此,建立公平合理的利益分配机制是维持供应链存在和稳定发展的关键,它关系到供应链的成败。任何企业对所制定的利益分配方案的不满,都将会给供应链带来一定的冲突和利益损失,甚至导致其破裂。因此,合理的利益分配方案是供应链企业和谐持续发展的关键。在这种压力下, 国内外许多学者从不同角度应用不同方法对供应链的利益分配问题进行了深入的研究。其中,应用Shapley值法进行利益分配的研究较多而且不少学者从不同角度对该法进行了改进。马士华1等考虑到技术创新是提高企业竞争力的主要途径之一,引入激励系数j (0j1)对Shapley值进行修正。张延锋2等,从价值创造的角度分析了合作者进入联盟的条件和进行收益分配的几个基本原则提出了一种基于风险因子的修正算法。王岳峰3等考虑了贡献率、风险、投资等多项因素对利益分配结果的影响应用AHP确定三者之间的权重,对Shapley值法进行改进。吕会军4等设定基于创新能力的利润分配系数a、基于风险的利润分配系数b、基于成本投入的利润分配系数c(a+b+c=1),在联盟企业合作的不同阶段,通过调整a、b、c三者的比例关系对Shapley值作出合理调整。这些研究大多是从Shapley值法出发,忽略了联盟中各企业在风险、技术创新等方面存在的差异的角度提出的。雷宣云5等从博弈论角度认证了共享产出模式适合战略性合作伙伴,利用NASH 协商模型建立了以保留收益为谈判基点的虚拟企业战略性合作伙伴利益分配模型,并提出了一种二次利益分配模型。叶飞6从协商的角度提出了基于不对称协商模型的虚拟企业利益分配方法从合作伙伴满意度水平的角度提出了基于满意度水平的虚拟企业利益分配协商模型在传统的群体重心模型的基础上, 建立了虚拟企业利益分配的群体加权重心模型。总之,在进行供应链企业利润分配时,多数采用Shapley值法。2 Shapley 值法Shapley值法是Shapley在1953年给出的用于解决多人合作对策利益分配问题的一种数学方法。当n个人从事一项经济活动时,他们之中的若干人组合的每一种合作形式,都会产生一定的收益,当人们之间的利益活动非对抗性时,合作中人数的增加不会引起收益的减少,那么全体n个人的合作将带来最大效益,即n个人一起结成联盟时获得的收益额最大。Shapley值法就是在各参与人之间对这个最大收益重新分配的一种方案,其内涵如下:设集合I:1,2,n,如果对于I的任何一个子集s(表示n人集合中的任一组合,也称为一个联盟)都对应着一个实值函数v(s),满足:v()=0, v(s1 s2)v(s1)+v(s2), s1 n s2 = (1)则称I,v为n人合作对策,其中为合作对策的特征函数。用Xi 表示I中 i 成员从合作最大收益 v(I) 中分配到的收益额,n人合作对策分配额的集合用X=(X1,X2,X n) 表示,显然,该合作成功必须满足如下条件:且Xi v(i) , i =1,2,n (2)在Shapley值法中,合作I下各个伙伴所得的利益分配称为Shapley值,记作(v)=( 1(v),2(v),n(v),其中 i(v)表示在合作I下第i个成员所得的分配,可由下列公式可得: i(v)=sv(s) v(si) i=1,2, ) (3) W(s)= (4)其中Si是集合I中包含成员i的所有子集,s是子集S中的元素个数,n为集合I中的元素个数,W(s)可以看成是加权因子,v(s)为子集s的收益,v(si)是子集s中除去成员后可取得的收益,v(s)和v(si)的差值为成员i对子集S收益所做的贡献。但是Shapley值法过分强凋效益分配的平等,忽视了具体联盟形成过程中企业间的差异性,比承受风险水平、资源贡献率、创新能力以及企业投资额大小等,也忽视了现有联盟中是否已有企业之前合作过形成的联合依赖,本文针对这些缺陷,提出了一种新的修正算法和模型,且结合层析分析法计算,并通过实例验证利润分配的方式。3虚拟企业利润分配新方法通过进一步的研究发现,上述分配方式并不是很完美。Shapley值法过分强凋效益分配的平等,忽视了具体联盟形成过程中企业间的差异性,比承受风险水平、资源贡献率、创新能力以及企业投资额大小等,也忽视了现有联盟中是否已有企业之前合作过形成的联合依赖。各企业的经营者对于风险的偏好也是不同的。这种分配方式没有考虑到各联盟成员在合作过程中的风险承担问题,Shapley值法是一种基于中性风险的分配方案。对于承担较大一些风险的企业就不能仅仅按照Shapley值法确定的边际贡献来分配利益,应当还要对这种企业适当增加其在利益分配中相应的比重,只有这样才能鼓励联盟成员多承担联盟可能遇到的风险,从而使得联盟的有效运作更有保障。供应链合作是一种较为稳定的合作方式,供应链上企业竞争力的增强有利于供应链整体竞争力的提高,而技术创新是提高企业竞争力的主要途径之一,因此,可以通过对Shapley值法进行调整,以实现对供应链中企业创新性努力的激励。可是,Shapley值法只是按照企业的平均贡献来分配利益,因此,这样的分配是不公平的,长此以往必将损害贡献大的企业的积极性,也必将威胁到联盟的安全。企业的投资额也是影响分配的一个重要因素。Shapley值法只考虑对产生的利益如何分配,并没有考虑到这些利益是怎么来的。资本本来就是获取利益的一个重要源泉, 投资额的大小也是企业参与利益分配的一个重要因素。因此, 投资额大小在利益分配中也应当有一定的权重影响。投资额应当包括企业的所有投入, 具体包括: 启动资金、人力资本和融资成本等。供应链内部的成员均可独立地选择自己的努力水平,而其对利益的边际贡献不仅依赖于企业自身的努力水平,还取决于其他成员的努力水平,因而这种利益分配方式可能导致偷懒行为“搭便车“的出现。另外,各企业提供服务是否及时保质保量等也各不相同。本文把这些因素统称为“诚信指数”。本文针对这些缺陷,提出了一种新的修正算法和模型,且结合层析分析法计算,并通过实例验证利润分配的方式。下文的修正都是以甲乙丙三家企业为假设考虑的。3.1 基于风险因子的修正7-10在用Shapley值法解决的联盟企业的利益分配问题中, 没有考虑各成员在经营过程中承担的风险问题, 即假设成员的经营风险是均等的, 也就是说,对于经济活动集合N = 1, 2, , N , 各成员承担的风险均为: R = 。显然, 这是一种理想情况, 现实经济活动中几乎是不可能的。于是, 必须对上述算法做出必要的修正, 使它更符合实际情况。在联盟企业合作过程中, 合作的总体利益为v(N ), 在考虑风险均等因素的理想情况下, 单个成员获得的利益分配为v(i)。设它就等于在shapley值分配下单个成员分得的利益, 考虑风险因素后单个成员实际分配为v(iR)。成员实际承担的风险为Ri( i=1,2,n) 则Ri 与均担风险的差值为: Ri= Ri- 。则= 1;Ri=0 。其中Ri表示了成员在实际合作过程中承担的风险与理想情况下的风险差值。于是应给予成员企业的实际利益分配修正量为: v= v(N )* Ri则实际利益分配量为:v(iR)= v(i)+ v。具体修正方案为:当Ri0时,表示伙伴在实际合作中承担的风险比理想情况下要高,于是,应该给予它更多的利益分配,利益增值为:v= v(N )* Ri。即该伙伴企业实际分得利益为 v(iR)= v(i)+ v (5) 当Ri0时,表示伙伴在实际合作中承担的风险比理想状况下低,于是,应从原来的分得的利益中扣除相应的部分,即该伙伴企业实际分得利益为v(iR)= v(i) - v (6)基于风险因子修正后,企业的实际利益为 M1 =( V11,V12,V13)。3.2 基于创新程度的修正1设i 企业通过技术创新创造的收益为 qi , 则qi 为供应链上所有企业通过技术创新创造的收益。根据供应链所处行业对技术创新的要求不同,在供应链契约中设定一个各企业可以接受的激励指数j (0 j 时,企业i 将因技术创新获得奖励;当 时,企业i 会由于技术创新成果不显著而受到惩罚;当 = 时,该企业最终收益与调整前相同。显然, v(iI)= v(i) +j qi - n j qi = i ( v) = v (iI) 。基于创新激励指数修正计算后后,企业的实际利益为 M2 =( V21,V22,V23)。3.3 基于投资额的修正11设企业i的所有投入为Ti, 联盟N中n个企业的投资大小向量用下式表示:T = ( T1, T2, , Tn )在不考虑其他因素, 只考虑投资额大小的情况下, 企业i可分得的利益为: v(iT)= * v(N) (8)基于投资额修正计算后,企业的实际利益为 M3 =( V31,V32,V33)。3.4 基于诚信指数的修正12在用Shapley值法解决的联盟企业的利益分配问题中, 假设成员都是同等努力同等诚信的,这是一种理想状态。 也就是说,对于经济活动集合N = 1, 2, , N , 各成员的诚信指数均为: H = 。这里,诚信指数包括了努力水平、按时供货、保质保量等因素。显然,现实经济活动中所以供应链上的企业都是同等诚信几乎是不可能的。于是, 必须对上述算法做出必要的修正, 使它更符合实际情况。在联盟企业合作过程中, 合作的总体利益为v(N ), 在考虑诚信均等因素的理想情况下, 单个成员获得的利益分配为v(i)。设它就等于在shapley值分配下单个成员分得的利益, 考虑诚信因素后单个成员实际分配为v(iH)。成员实际的诚信水平为Hi( i=1,2,n) 则Hi 与均等诚信水平的差值为: Hi= Hi- 。则= 1;Hi=0 。其中Hi表示了成员在实际合作过程中的诚信状况与理想情况下的诚信水平的差值。于是应给予成员企业的实际利益分配修正量为: v= v(N )* Hi则实际利益分配量为:v(iH)= v(i)+ v。具体修正方案为:当Hi0时,表示伙伴在实际合作中的诚信指数比理想情况下要高,于是,应该给予它更多的利益分配,利益增值为:v= v(N )* Hi。即该伙伴企业实际分得利益为 v(iH)= v(i)+ v (9) 当Hi0时,表示伙伴在实际合作中的诚信水平比理想状况下低,于是,应从原来的分得的利益中扣除相应的部分,即该伙伴企业实际分得利益为v(iH)= v(i) - v (10)基于诚信指数后,企业的实际利益为 M4 =( V41,V42,V43)。利用层次分析法得出M1,M2,M3,M4权重向量 W=(,), 基于风险因子修正后,企业的实际利益为 M1 =( V11,V12,V13);基于创新激励指数修正计算后后,企业的实际利益为 M2 =( V21,V22,V23);基于投资额修正计算后,企业的实际利益为 M3 =( V31,V32,V33);基于诚信指数后,企业的实际利益为 M4 =( V41,V42,V43)。设三企业的最终分配利润值为(V1 ,V2,V3)。则,最终分配值 (V1 ,V2,V3)= (,)4 实例分析考虑包含三个企业甲、乙、丙的供应链,三企业投资额分别为120万、100万和80万。 三企业各自独立经营甲为300万 , 乙为200万,丙为100万,甲乙合作获利为600万, 甲丙合作获利为700万,乙丙合作获利为500万, 三企业合作获利为1200万。甲乙丙承担的风险系数依次为0.5、0.3、0.2,诚信系数为0.4、0.4、0.3。假设甲、乙、丙三企业对通过技术创新为供应链创造的收益为100万、0 、50万(此收益包含在合作总获利中)。事前合同商定激励指数j = 20 %,假设企业所分配的收益的总和即为整个供应链创造的利润的总和,根据Shapley 值法,甲企业的分配1 ( v) 的计算如表1 。(设甲乙丙企业用企业1、企业2、企业3来表示13-16。(单位为万元)表1:甲企业分配1 ( v)的计算 S112 13123v(s)300600 700 1200 v(s1)0 200100 500v(s) v(s1)300 400600 700s1 2 2 3 W(s)W(s)* v(s) v(s1) 100 100将末行数据相加, 得到甲企业应得收益为1 ( v) =500万 ,同理可以计算乙企业应得收益2( v) =350万;丙企业应得收益为3( v)=350万。M1的计算:由于甲乙丙承担的风险系数依次为0.5、0.3、0.2。则依据公式Ri= Ri- 可得R1= ; R2= -; R3= -,依据公式(5)和公式(6)可得:V11=5001200=700万; V12 =350(-)1200=310万;V13=350(-)1200=190万 即 M1=(700,310,190)。M2的计算:事前合同商定激励指数j = 20 %,假设甲、乙、丙三企业对通过技术创新为供应链创造的收益为100 、0 、50,则根据公式(7)可得:V21=500+20%(100+0+50)(-)=510万,V22=350+20%(100+0+50)(-)=340万,V23=350+20%(100+0+50)(-)=350万。即M2=(510,340,350)。M3的计算:三企业投资额分别为120万、100万和80万,三企业合作获利为1200万。根据公式(8)可得:V31=1200=480万,V32=1200=400万,V33=1200=320万。即M3=(480,400,320)。M4的计算:由于甲乙丙的诚信系数为0.4、0.4、0.3,根据公式(9)和公式(10)可得:则依据公式Hi= Hi- 可得H1= ; H2= -; H3= -V41=5001200=580,V42=350+(-)1200=310,V43=350+(-)1200=310。即M4=(580,310,310)。综上所述,可得=接下来,本文用层次分析法对上述四种修正算法进行权重分配16。进行层次分析法的顺序是:建立层次结构模型。在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。当准则过多时(譬如多于9个)应进一步分解出子准则层。 构造成对比较阵。从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用成对比较法和19比较尺度构追成对比较阵,直到最下层。计算权向量并做一致性检验。对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构追成对比较阵。计算组合权向量并做组合一致性检验。计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。 各部分权重系数的确定对于利润分配结果的公平至关重要。首先对影响个部分分配比例的集合W=(,)建立判断矩阵A,表示为:A=判断矩阵A中的元素 aij 表示两两元素之间的相对重要性。在进行aij的设定时,我们可以分至为1到9等,用1,3,5,7,9,来表示两两元素之间的相对重要程度,用2,4,6,8来表示两个程度的中间状态。相反,用其倒数来表示元素之间的不重要性aji 。评价的判断尺度如下表1所示。 表1:判断尺度定义表判断尺度含义1同样重要3略微重要5明显重要7非常重要9绝对重要2,4,6,8上述两个相邻判断的中间值在进行利润分配权重的确定之前,主导企业需要与各参与分配的成员企业充分协商,或者由各企业相关人员组成评定小组对各元素的两两重要性进行评判,以体现分配过程的公平和合理。假设对于本次利润分配的判断矩阵为: 各元素重要性的排序可以归结为计算判断矩阵A 的特征值和特征向量问题。然而由于人们对于复杂事物的各因素进行两两比对时,判断不可能完全一致,所以在计算之前,要先检验判断矩阵的逻辑一致性。为此引入CI作为一致性指标:CI=。其中max为判断矩阵A的最大特征值,n 为判断矩阵的维数。对于不同阶数判断矩阵A的一致性判断,引入了平均随机一致性指标RI。对于1-9阶的判断矩阵,其RI的值如表2所示。表二:不同阶数平均随机一致性指标RIn123456789RI0.000.000.580.900.121.241.321.411.45对于1、2阶矩阵,RI只是形式上的,当阶数大于2时,引入判断矩阵的随机一致性比率CR。当CR= 0.10时,即认为判断矩阵具有满意的一致性,否则就要重新进行两两比对,并使之具有满意的一致性。可以求得判断矩阵中A的最大特征值max=4.0763,CI=0.0254,由表二可知n=4时,RI=0.90,则CR=0.0283 0.10,说明判断矩阵具有很好的一致性。相应的特征向量为:Vmax=0.8982,0.3951,0.1765,0.0773T。这一向量经过归一化处理后的特征向量为max=0.5806,0.2554,0.1141,0.0499T。即各部分分配的比例权重集合为W=(,)=(0.5806,0.2554,0.1141,0.0499)。则,最终分配值 (V1 ,V2,V3,V4)= (,)=(0.5806,0.2554,0.1141,0.0499)=(620.384,327.931,251.685)。这样我们就得到了甲乙丙三个企业的利润分配最终值为甲:620.384万元,乙为327.931万元,丙为251.685万元。5 结论供应链企业伙伴利益的合理分配是支持供应链正常运行的一个重要条件。考虑到企业承担风险情况的不同,以及投资额的大小、诚信指数与创新程度的高低,提出的考虑权重的基于Shapley 值法的利益分配模型对已往的分配策略进行改进,以实现对企业技术创新、诚信的激励。从文章中例子也可以看出,实际情况中,若一个企业承担风险越大、创新指数与诚信指数越高,投资越大,理应分得更高的收益。这一分配方案较好地解决了供应链合作伙伴间收益分配问题, 具有一定实用价值。参考文献1 马士华,王鹏.基于shapley值法的供应链合作伙伴间收益分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论