高一数学概率初步新课标人教0_第1页
高一数学概率初步新课标人教0_第2页
高一数学概率初步新课标人教0_第3页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

概率初步,温故而知新,1、随机现象,事前不能完全确定,事后会出现各种可能结果之一的现象。,2、随机试验(简称“试验”),有的试验,虽然一次试验的结果不能预测,但一切可能出现的结果却是可以知道的,这样的观察称为随机试验。,3、样本空间,一个随机试验的一切可能出现的结果构成的集合。,4、随机事件(简称“事件”)用A、B、C等表示,样本空间的任一个子集。,5、基本事件,样本空间的元素(随机试验每一个可能出现的结果),概率初步,考察下列现象,判断那些是随机现象,如果是随机试验,则写出试验的样本空间,1、抛一铁块,下落。2、在摄氏20度,水结冰。3、掷一颗均匀的骰子,其中可能出现的点数为1,2,3,4,5,6.4、连续掷两枚硬币,两枚硬币可能出现的正反面的结果。5、从装有红、黄、蓝三个大小形状完全相同的球的袋中,任取两个球,其中可能出现不同色的两个球的结果。,分析例3、4、5的每一个基本事件发生的可能性,概率初步,3、掷一颗均匀的骰子,它的样本空间为:1,2,3,4,5,6它有6个基本事件,即有6种不同的结果,由于骰子是均匀的,所以这6种结果的机会是均等的,于是,掷一颗均匀的骰子,它的每一种结果出现的可能性都是.,概率初步,古典概率,我们会发现,以上三个试验有两个共同特征:,(1)有限性:在随机试验中,其可能出现的结果有有限个,即只有有限个不同的基本事件;,(2)等可能性:每个基本事件发生的机会是均等的。,我们称这样的随机试验为古典概型。,1、古典概型,概率初步,古典概率,一般地,对于古典概型,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有,我们把可以作古典概型计算的概率称为古典概率。,2、古典概率,注意:A即是一次随机试验的样本空间的一个子集,而m是这个子集里面的元素个数;n即是一次随机试验的样本空间的元素个数。,概率初步,古典概率,显然,(1)随机事件A的概率满足0P(A)1,(2)必然事件的概率是1,不可能的事件的概率是0,即P()=1,P()=0.,如:1、抛一铁块,下落。2、在摄氏20度,水结冰。,是必然事件,其概率是1,是不可能事件,其概率是0,3、概率的性质,概率初步,例题分析,1、掷一颗均匀的骰子,求掷得偶数点的概率。,分析:先确定掷一颗均匀的骰子试验的样本空间和掷得偶数点事件A,再确定样本空间元素的个数n,和事件A的元素个数m.最后利用公式即可。,解:掷一颗均匀的骰子,它的样本空间是=1,2,3,4,5,6,n=6,而掷得偶数点事件A=2,4,6,m=3,P(A)=,概率初步,例题分析,2、从含有两件正品a,b和一件次品c的三件产品中每次任取1件,每次取出后不放回,连续取两次,求取出的两件中恰好有一件次品的概率。,分析:样本空间事件A它们的元素个数n,m公式,解:每次取一个,取后不放回连续取两次,其样本空间是,=,(a,b),(a,c),(b,a),(b,c),(c,a),(c,b),n=6,用A表示“取出的两件中恰好有一件次品”这一事件,则,A=,(a,c),(b,c),(c,a),(c,b),m=4,P(A)=,概率初步,例题分析,3、从含有两件品a,b和一件次品c的三件产品中每次任取1件,每次取出后放回,连续取两次,求取出的两件中恰好有一件次品的概率。,解:有放回的连取两次取得两件,其一切可能的结果组成的样本空间是,=,(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c),n=9,用B表示“恰有一件次品”这一事件,则,B=,(a,c),(b,c),(c,a),(c,b),m=4,P(B)=,概率初步,练习巩固,1、从含有两件正品a,b和一件次品c的三件产品中任取2件,求取出的两件中恰好有一件次品的概率。,解:试验的样本空间,=ab,ac,bc,n=3,用A表示“取出的两件中恰好有一件次品”这一事件,则,A=ac,bc,m=2,P(A)=,概率初步,练习巩固,2、从1,2,3,4,5五个数字中,任取两数,求两数都是奇数的概率。,解:试验的样本空间是,=(12),(13),(14),(15),(23),(24),(25),(34),(35),(45),n=10,用A来表示“两数都是奇数”这一事件,则,A=(13),(15),(3,5),m=3,P(A)=,概率初步,练习巩固,3、同时抛掷1角与1元的两枚硬币,计算:(1)两枚硬币都出现正面的概率是(2)一枚出现正面,一枚出现反面的概率是,0.25,0.5,4、在一次问题抢答的游戏,要求答题者在问题所列出的4个答案中找出唯一正确答案。某抢答者不知道正确答案便随意说出其中的一个答案,则这个答案恰好是正确答案的概率是,0.25,概率初步,练习巩固,6、在掷一颗均匀骰子的实验中,则事件Q=4,6的概率是,7、一次发行10000张社会福利奖券,其中有1张特等奖,2张一等奖,10张二等奖,100张三等奖,其余的不得奖,则购买1张奖券能中奖的概率,概率初步,小结与作业,一、小结:,1、古典概型,(1)有限性:在随机试验中,其可能出现的结果有有限个,即只有有限个不同的基本事件;,(2)等可能性:每个基本事件发生的机会是均等的。,2、古典概率,二、作业:,P123习题1,2,3P127习题2,概率初步,思考,1、在10支铅笔中,有8支正品和2支次品。从中任取2支,恰好都取到正品的概率是,2、从分别写上数字1,2,3,9的9张卡片中,任取2张,则取出的两张卡片上的“两数之和为偶数”的概率是,答案:(1),(2),小知识概率统计的第一篇论文是1657年惠更斯的论赌博的计算,从那时起直到十九世纪初,人们运用当时发展起来的排列组合理论和变量数学为工具,发展了古典概率和几何概率范围的概念、计算及其分析性质的成果,如大数定律,贝叶斯定理,高斯分布,最小二乘法等。拉普拉斯以分析概率论作了总结,形成了古典的描述性统计学。十九世纪是统计学相对停滞和酝酿时期,二十世纪初至第二次世界大战前,由于法俄概率论和英美统计科学的发展以及它们的结合,使概率统计学得以正式列入数学之林,诸分支在实践中迅速产生,如在生物学研究中提出的回归分析;出自农业实验的方差分析、实验设计理论;大规模工业生产所要求的抽样检查;从道奇洛密克抽样表到序贯分析以至质量控制。等等。形成现代统计学的大部分内容。二次世界大战后,概率统计学主要在纯理论研究上取得进展。概率统计学的形成,标志着人类的认识和实践领域,从必然现象扩展到偶然现象(随机

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论