已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
算法设计与分析1、(1) 证明:O(f)+O(g)=O(f+g)(7分)(2) 求下列函数的渐近表达式:(6分) 3n2+10n; 21+1/n;2、对于下列各组函数f(n)和g(n),确定f(n)=O(g(n)或f(n)=(g(n)或f(n)=(g(n),并简述理由。(15分)(1)(2)(3)3、试用分治法对数组An实现快速排序。(13分)4、试用动态规划算法实现最长公共子序列问题。(15分)5、试用贪心算法求解汽车加油问题:已知一辆汽车加满油后可行驶n公里,而旅途中有若干个加油站。试设计一个有效算法,指出应在哪些加油站停靠加油,使加油次数最少。(12分)6、试用动态规划算法实现下列问题:设A和B是两个字符串。我们要用最少的字符操作,将字符串A转换为字符串B,这里所说的字符操作包括:(1)删除一个字符。(2)插入一个字符。(3)将一个字符改为另一个字符。将字符串A变换为字符串B所用的最少字符操作数称为字符串A到B的编辑距离,记为d(A,B)。试设计一个有效算法,对任给的两个字符串A和B,计算出它们的编辑距离d(A,B)。(16分)7、试用回溯法解决下列整数变换问题:关于整数的变换和定义如下:。对于给定的两个整数和,要求用最少的变换和变换次数将变为。(16分)1、证明:令F(n)=O(f),则存在自然数n1、c1,使得对任意的自然数nn1,有:F(n)c1f(n).(2分)同理可令G(n)=O(g),则存在自然数n2、c2,使得对任意的自然数nn2,有:G(n)c2g(n).(3分)令c3=maxc1,c2,n3=maxn1,n2,则对所有的nn3,有:F(n)c1f(n)c3f(n)G(n)c2g(n)c3g(n).(5分)故有:O(f)+O(g)=F(n)+G(n)c3f(n)+c3g(n)=c3(f(n)+g(n)因此有:O(f)+O(g)=O(f+g).(7分) 解: 因为由渐近表达式的定义易知:3n2是3n2+10n的渐近表达式。.(3分) 因为,由渐近表达式的定义易知:21是的渐近表达式。.(6分)说明:函数T(n)的渐近表达式t(n)定义为:2、解:经分析结论为:(1).(5分)(2);.(10分)(3);.(15分)3、解:用分治法求解的算法代码如下:int partition(float A,int p,int r)int i=p,j=r+1;float x=ap;while(1)while(a+ix);if(i=j) break;aiaj.(4分);ap=aj;aj=x;return j;.(7分)void Quicksort(float a,int p,int r)if(pr)int q=partition(a,p,r);.(10分)Quicksort(a,p,q-1);Quicksort(a,q+1,r);Quicksort(a,0,n-1);.(13分)4、解:用动态规划算法求解的算法代码如下:int lcs_len(char* a,char* b,int cN)int m=strlen(a),n=strlen(b),i,j;for(i=0;i=m;i+)ci0=0;for(j=1;j=n;j+)c0j=0;.(4分)for(i=1;i=m;i+)for(j=1;j=cij-1)cij=ci-1j;elsecij=cij-1;.(7分)return cmn;.(8分);char* build_lcs(char s,char* a,char* b)int k,i=strlen(a),j=strlen(b),cNN;k=lcs_len(a,b,c);sk=0;while(k0)if(cij=ci-1j)i-;.(11分)else if(cij=cij-1)j-;elses-k=ai-1;i-,j-;return s;.(15分)5、解:int greedy(vecter x,int n)int sum=0,k=x.size();for(int j=0;jn)cout”Nosolution”endl;return-1;.(6分)for(int i=0,s=0;in)sum+;s=xi;.(9分)return sum;.(12分)6、解:此题用动态规划算法求解:int dist()int m=a.size();int n=b.size();vector d(n+1,0);for(int i=1;i=n;i+)di=i;.(5分)for(i=1;i=m;i+)int y=i-1;for(int j=1;j1?dj-1:i;.(10分)int del=ai-1=bj-1?0:1;dj=min(x+del,y+1,z+1);.(13分)return dn;.(16分)7、解:解答如下:void compute()k=1;while(!search(1,n)k+;if(kmaxdep)break;init();.(6分)if(found)output();.(9分)else cout”NoSolution!”k)return false;.(11分)for(in
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 超声波和次声波课件
- 《PDA发展与介绍》课件
- 单位管理制度展示大全【人事管理】十篇
- 单位管理制度展示大合集【人力资源管理篇】十篇
- 策略深度研究:当前还有哪些高股息值得关注
- 全程编制棉丝绒项目可行性研究报告方案可用于立项及银行贷款+201
- 2024-2026年中国微信公众号市场调查研究及行业投资潜力预测报告
- 可行性项目研究报告电子类
- 2024河南金属及金属矿批发市场前景及投资研究报告
- 2025年盐酸酯项目可行性研究报告
- 2024年人教版八年级语文上册期末考试卷(附答案)
- 辽宁省大连市2023-2024学年高三上学期双基测试(期末考试) 物理 含解析
- 劳务分包的工程施工组织设计方案
- 18项医疗质量安全核心制度
- 智能终端安全检测
- 新能源发电技术 电子课件 1.4 新能源发电技术
- DB34-T 4859-2024 农村河道清淤规范
- 中学物业管理服务采购投标方案(技术方案)
- 康复科年度工作亮点与展望计划
- 冀教版二年级(上)数学加减乘除口算题卡
- 【期中考后反思】《反躬自省,砥砺奋进》-2022-2023学年初中主题班会课件
评论
0/150
提交评论