江西白鹭洲中学高一数学月考_第1页
江西白鹭洲中学高一数学月考_第2页
江西白鹭洲中学高一数学月考_第3页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

白鹭洲中学20132014学年下学期高一年级第三次月考数学试卷 考生注意:试卷所有答案都必须写在答题卷上。答题卷与试卷在试题编号上是一一对应的,答题时应特别注意,不能错位。考试时间为120分钟,试卷满分为150分。 一、选择题:(本大题共有10 题,每 题5分,共50分)1. 下列语句中,是赋值语句的为()A. m+n=3 B. 3=iC. i=i+1 D. i=j=3解:根据题意,A:左侧为代数式,故不是赋值语句B:左侧为数字,故不是赋值语句C:赋值语句,把i2+1的值赋给iD:为用用两个等号连接的式子,故不是赋值语句故选C2. 已知a1,a2(0,1),记M=a1a2,N=a1+a2-1,则M与N的大小关系是()A.MNB. MX乙;甲比乙成绩稳定CX甲X乙;甲比乙成绩稳定DX甲 X乙;乙比甲成绩稳定解:由茎叶图可知,甲的成绩分别为:72,77,78,86,92,平均成绩为:81;乙的成绩分别为:78,82,88,91,95,平均成绩为:86.8,则易知X甲X乙;从茎叶图上可以看出乙的成绩比较集中,分数分布呈单峰,乙比甲成绩稳定故选A4. 将两个数a=5,b=12交换为a=12,b=5,下面语句正确的一组是()A. B. C. D. 解:先把b的值赋给中间变量c,这样c=12,再把a的值赋给变量b,这样b=5,把c的值赋给变量a,这样a=12故选:D5. 将参加夏令营的500名学生编号为:001,002,500. 采用系统抽样的方法抽取一个容量为50的样本,且样本中含有一个号码为003的学生,这500名学生分住在三个营区,从001到200在第一营区,从201到355在第二营区,从356到500在第三营区,三个营区被抽中的人数分别为()A. 20,15,15 B. 20,16,14 C. 12,14,16 D. 21,15,14解:系统抽样的分段间隔为=10,在随机抽样中,首次抽到003号,以后每隔10个号抽到一个人,则分别是003、013、023、033构成以3为首项,10为公差的等差数列,故可分别求出在001到200中有20人,在201至355号中共有16人,则356到500中有14人故选:B6. 如图给出的是计算+的值的一个框图,其中菱形判断框内应填入的条件是()A. i10B. i11D. i11解:S=+,并由流程图中S=S+循环的初值为1,终值为10,步长为1,所以经过10次循环就能算出S=+的值,故i10,应不满足条件,继续循环所以i10,应满足条件,退出循环判断框中为:“i10?”故选A7.设a、b是正实数, 给定不等式:;a|a-b|-b;a2+b24ab-3b2;ab+2,上述不等式中恒成立的序号为()A. B. C. D. 解:a、b是正实数,a+b21当且仅当a=b时取等号,不恒成立;a+b|a-b|a|a-b|-b恒成立;a2+b2-4ab+3b2=(a-2b)20,当a=2b时,取等号,例如:a=1,b=2时,左边=5,右边=412-322=-4不恒成立;ab+=22恒成立答案:D8已知x0,y0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是()A0 B1 C2 D4解析由题知abxy,cdxy,x0,y0,则4,当且仅当xy时取等号答案D9. 在ABC中,三边a、b、c成等比数列,角B所对的边为b,则cos2B+2cosB的最小值为()A. B.-1C. D.1解:a、b、c,成等比数列,b2=ac,cosB=cos2B+2cosB=2cos2B+2cosB-1=2(cosB+)2-,当cosB=时,cos2B+2cosB取最小值2-故选C10. 给出数列,在这个数列中,第50个值等于1的项的序号是()A.4900B.4901C.5000D.5001解:值等于1的项只有,所以第50个值等于1的应该是那么它前面一定有这么多个项:分子分母和为2的有1个:分子分母和为3的有2个:,分子分母和为4的有3个:,分子分母和为99的有98个:,分子分母和为100的有49个:,所以它前面共有(1+2+3+4+98)+49=4900所以它是第4901项故选B二、填空题:(本大题共有5 题,每 题5分,共25分) 11. 已知x、y的取值如下表:x0134y2.24.34.86.7从散点图分析,y与x线性相关,且回归方程为y=0.95x+a,则a= 解:点(,)在回归直线上,计算得2,4.5;代入得a=2.6;故答案为2.612. 已知函数f(x),则不等式f(x)x2的解集是 解:当x0时;f(x)=x+2,f(x)x2,x+2x2,x2-x-20,解得,-1x2,-1x0;当x0时;f(x)=-x+2,-x+2x2,解得,-2x1,0x1,综上知不等式f(x)x2的解集是:-1,1.13. 如果运行下面程序之后输出y的值是9,则输入x的值是 输入xIfx0Then y=(x+1)*(x+1)Else y=(x-1)*(x-1)Endif输出yEnd解:根据条件语句可知是计算y=当x0,时(x+1)(x+1)=9,解得:x=-4当x0,时(x-1)(x-1)=9,解得:x=4答案:-4或414. 在ABC中,角A、B、C所对的边分别为a、b、C、若(b-c)cosA=acosC,则cosA= 解:由正弦定理,知由(b-c)cosA=acosC可得(sinB-sinC)cosA=sinAcosC,sinBcosA=sinAcosC+sinCcosA=sin(A+C)=sinB,cosA=故答案为: 15. 设a+b=2,b0,则+ 的最小值为 解:a+b=2,1,+=+,b0,|a|0,+1(当且仅当b2=4a2时取等号),+1,故当a0时,+的最小值为故答案为:三、解答题 (本大题共有6 题,共75 分)16. 已知关于x的不等式x2-4x-m0的解集为非空集x|nx5(1)求实数m和n的值(2)求关于x的不等式loga(-nx2+3x+2-m)0的解集解:(1)由题意得:n和5是方程x2-4x-m=0的两个根(2分)(3分)(1分)(2)1当a1时,函数y=logax在定义域内单调递增由loga(-nx2+3x+2-m)0得x2+3x-31(2分)即 x2+3x-40x1 或 x-4(1分)2当0a1时,函数 y=logax在定义域内单调递减由:loga(-nx2+3x+2-m)0得:(2分)即(1分)(1分)当a1时原不等式的解集为:(-,-4)(1,+),当0a1时原不等式的解集为: (1分)17. 某校高一学生共有500人,为了了解学生的历史学习情况,随机抽取了50名学生,对他们一年来4次考试的历史平均成绩进行统计,得到频率分布直方图如图所示,后三组频数成等比数列(1)求第五、六组的频数,补全频率分布直方图;(2)若每组数据用该组区间中点值作为代表(例如区间70,80)的中点值是75),试估计该校高一学生历史成绩的平均分;(3)估计该校高一学生历史成绩在70100分范围内的人数解:(1)设第五、六组的频数分别为x,y由题设得,第四组的频数是0.0241050=12则x2=12y,又x+y=50-(0.012+0.016+0.03+0.024)1050即x+y=9x=6,y=3补全频率分布直方图(2)该校高一学生历史成绩的平均分10(450.012+550.016+650.03+750.024+850.012+950.006)=67.6(3)该校高一学生历史成绩在70100分范围内的人数:500(0.024+0.012+0.006)10=21018. 根据如图所示的程序框图,将输出的x,y依次记为x1,x2,x2013,y1,y2y2013,(1)求出数列xn,yn(n2013)的通项公式;(2)求数列xn+yn(n2013)的前n项的和Sn解:(1)由程序框图可得到数列xn是首项为2,公差为3的等差数列,xn=3n-1,(n2013)数列yn+1是首项为3公比为2的等比数列,yn+1=32n-1,yn=32n-1-1,(n2013)()xn+yn=3n-1+32n-1-1=,(n2013)Sn=(2+5+3n-1)+(3+6+32n-1)-n=+32n-3-n=32n+(n2013)19. 在ABC中,B=45,AC=,cosC= ,(1)求BC的长;(2)若点D是AB的中点,求中线CD的长度解:(1)由cosC得sinCsinAsin(18045C)(cosC+sinC)由正弦定理知BCsinA3(2)ABsinC2,BDAB1由余弦定理知CD=20. 某森林出现火灾,火势正以每分钟100 m2的速度顺风蔓延,消防站接到警报立即派消防员前去,在火灾发生后五分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火50 m2,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁1 m2森林损失费为60元,问应该派多少消防员前去救火,才能使总损失最少?解:设派x名消防员前去救火,用t分钟将火扑灭,总损失为y元,则t=,y=灭火材料、劳务津贴+车辆、器械、装备费+森林损失费=125tx+100x+60(500+100t)=125x+100x+30000+y=1250+100(x-2+2)+30000+=31450+100(x-2)+31450+2=36450,当且仅当100(x-2)=,即x=27时,y有最小值36450答:应该派27名消防员前去救火,才能使总损失最少,最少损失为36450元.21. 各项为正数的数列an满足4Sn2an1(nN*),其中Sn为an前n项和(1)求a1,a2的值;(2)求数列an的通项公式;(3)是否存在正整数m、n,使得向量=(2an+2,m)与向量=(an+5,3+an)垂直?说明理由解:(1)当n=1时,4S12a11,化简得(a11)20,解之得a1=1当n=2时,4S22a21=4(a1+a2)-2a2-1将a1=1代入化简,得a222a230,解之得a2=3或-1(舍负)综上,a1、a2的值分别为a1=1、a2=3;(2)由4Sn2an1,4Sn+12an+11-,得4an+12an+1+2an2(an+1+an)移项,提公因式得(an+1+an)(an+1-an-2)=0数列an的各项为正数,an+1+an0,可得an+1-an-2=0因此,an+1-an=2,得数列an构成以1为首项,公差d=2的等差数列数列an的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论