




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
波动方程的应用:海洋中的声传播理论 潘宇航杨诚诚动方程或称波方程(wave equations)由麦克斯韦方程组导出的、描述电磁场波动特征的一组微分方程,是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波和水波。波动方程抽象自声学,电磁学,和流体力学等领域。本篇论文将从声传播理论出发来了解波动方程在海洋科学中的应用。首先利用一幅图来介绍声场常用分析方法。波动理论(简正波方法)是研究声信号的振幅和相位在声场中的变化,它适用低频,数学上复杂、物理意义不直观的声场分析方法。在封闭空间或半关闭空间,反射波的互相干涉要形成一系列的固有振动,称之为简正波。简正方式理论是引用量子力学中本征值的概念并加以发展而形成的。本篇论文将从介绍波动方程和两种基础生场中的简正波两部分来讨论。波动方程在理想海水介质中,小振幅波的运动方程、连续性方程和状态方程:引入新变量:考虑简谐波,则有:备注:不是声场势函数,K不是波数,且均为三维空间函数。在海水中,与声速相比密度变化很小,将其视为常数,则有:如果介质有外力作用,例如有声源情况,则有:1.5定解条件 定解条件就是满足物理问题的具体条件1.5.1边界条件 边界条件是物理量在介质边界上必须满足的条件1.5.1.1绝对软边界条件 假定声压为零为绝对软边界条件,可设 界面方程: 界面声压:此时此条件为第一类齐次边界条件 如果已知边界面上的压力分布,则有:此条件为第一类非齐次边界条件1.5.1.2绝对硬边界条件 假定法向质点振速为零为绝对硬边界条件 此时界面方程: 界面声压: 此为第二类齐次边界条件如果已知边界面上的质点振速分布,则有:此为第二类非齐次边界条件1.5.1.3混合边界条件 此时条件为压力和振速线性组合 形式如此式: 若a为常数,则为第三类边界条件若,则为阻抗边界条件:1.5.1.4边界上密度或声速有限间断边界上压力和法向质点振速连续,可表示如下式: 若压力不连续,质量加速度趋于无穷;若法向振速不连续,边界上介质“真空”或“聚集”。1.5.2辐射条件 无穷远处没有声源存在时,其声场应具有扩散波的性质。1.5.2.1平面波情况 1.5.2.2柱面波情况 1.5.2.3球面波情况*这种条件也称之为索末菲尔德(Sommerfeld)条件。1.5.3奇性条件对于声源辐射的球面波,在声源处存在奇异点,即 不满足波动方程;如果引入狄拉克函数,它满足非齐次波动方程根据狄拉克函数的定义, 下列将证明非齐次波动方程正确性证:简谐球面波有:体积积分后为:利用高斯定理:证明左端右端,证毕。1.5.4初始条件当求远离初始时刻的稳态解,可不考虑初始条件。2. 波动声学2.1、硬底均匀浅海声场 硬底均匀浅海声场的波导模型为上层为均匀水层,下层为硬质均匀海底,海面和海底均平整。2.1.1简正波由于问题圆柱对称性,则水层中声场满足波动方程:在圆柱对称情况下,根据狄拉克函数定义可求得: 常数A与声源强度有关,不失一般性取A=1,则有:常数A与声源强度有关,不失一般性取A=1,则有:常数A与声源强度有关,不失一般性取A=1,则有: 令 ,由分离变量法可求得本征函数通解: 根据边界条件: 自由海面: 硬质海底:根据正交归一化条件:同理可得 的解(零阶贝塞尔方程):此时声场中声压为:在远场,根据汉克尔函数近似表达式:n阶简正波表达式:*每阶简正波沿深度z方向作驻波分布、沿水平r方向传播的波;不同阶数的简正波其驻波的分布形式不同。 2.1.2.截止频率2.1.2.1简正波阶数最大值: 当简正波数nN时,水平波数变为虚数,简正波振幅随r作指数衰减。在远场,声场可表示成有限项: 2.1.2.2临界频率:临界频率是最高阶简正波传播频率 声源激发频率时,波导中不存在第N阶及以上各阶简正波的传播。2.1.2.3截止频率:截止频率是简正波在波导中无衰减传播的最低临界频率声源激发频率时,所有各阶简正波均随距离按指数衰减,远场声压接近为零。2.1.3相速度和群速度相速:等相位面的传播速度(振动状态在介质中的传播速度) 群速:声波能量的传播速度简正波的群速小于相速。 相速:虚斜线沿r方向传播速度群速:波形包络传播速度2.1.4传播损失2.1.4.1传播损失假设单位距离处声压振幅为1,则远处传播损失为:当 和 均为实数时,可得:当声传播条件充分不均匀,简正波之间相位无关:对于硬质海底的浅海声场的传播损失: 假设声源和接收器适当远离海面和海底:在0和1之间随机取值 0和1之间随机取值 在0和1之间随机取值 如果波导中简正波个数较多:深度取平均后,传播损失为:此时声能被限制在层内,随距离r作柱面波衰减。2.1.4.2声波掠射角和声源位置2.1.4.2.1 掠射角掠射角变化在传播损失中:此时分为两种情况,分别为硬质海底与非绝对硬质海底1)硬质海底:2)非绝对硬质海底:带入了掠射角变化在传播损失,可以得出非绝对硬质海底传播损失大于硬质海底的TL值。2.1.4.2.2声源位置 声源位于海面附近,TL变大;声源位于海底附近,TL变小。2.2 液态海底均匀浅海声场波导模型(Pekeris模型分层介质模型):液态海底没有切变波,其声速通常大于海水声速,但对于高饱和海底沉积层会出现相反情况。2.2.1液态海底均匀浅海声场的简正波 同硬质海底情况一样,可以求得液态海底均匀浅海声场底简正波为: 在液态下半空间中,振幅沿深度按指数规律衰减,频率越高,振幅衰减越快。高频声波在界面发生全反射时,能量几乎全被反射会水层中,波的能量几乎被限制在层内传播。2.2.2截
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 玉柴职业技术学院《微积分上》2023-2024学年第一学期期末试卷
- 天津医科大学《三维动画制作》2023-2024学年第二学期期末试卷
- 焦作新材料职业学院《历史教学理论与教学设计》2023-2024学年第二学期期末试卷
- 宿州学院《马克思主义经典著作》2023-2024学年第一学期期末试卷
- 武汉电力职业技术学院《数据通信技术实验》2023-2024学年第二学期期末试卷
- 临汾职业技术学院《英语视听说实验教学》2023-2024学年第二学期期末试卷
- 吕梁职业技术学院《临床精神病学见习》2023-2024学年第二学期期末试卷
- 闽江学院《数据挖掘》2023-2024学年第二学期期末试卷
- 新疆阿克苏沙雅县2025届初三下学期检测试题卷(一)物理试题含解析
- 山东省济南市市中区2025届初三下学期第十二次重点考试生物试题含解析
- 特种设备作业人员考试机构规范管理办法(含附件附表 )
- 环境有害物质管理办法
- 基于PLC的温室大棚控制系统设计
- 动物免疫学第五章细胞因子
- 新版防雷检测职业技能竞赛综合知识试题库(精简500题)
- 2023年新华人寿保险股份有限公司招聘笔试题库及答案解析
- GB/T 3452.1-2005液压气动用O形橡胶密封圈第1部分:尺寸系列及公差
- GB/T 23641-2018电气用纤维增强不饱和聚酯模塑料(SMC/BMC)
- 新版《FMEA(第五版)》学习笔记(完整版)
- 装配式建筑施工组织设计(修改)
- 《高等教育心理学》《高等教育学》样题
评论
0/150
提交评论