




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
181 勾股定理(一)教学目标知识与技能1了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2培养在实际生活中发现问题总结规律的意识和能力。3介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。过程与方法经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识。情感态度与价值观培养学生严谨的数学学习态度,体会勾股定理的应用价值。重点勾股定理的内容及证明。难点勾股定理的证明。教学过程教学设计 与 师生行为备 注第一步:课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。让学生画一个直角边为3cm和4cm的直角ABC,用刻度尺量出AB的长。以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。再画一个两直角边为5和12的直角ABC,用刻度尺量AB的长。你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。对于任意的直角三角形也有这个性质吗?第二步:证明新知:方法一;如图,让学生剪4个全等的直角三角形,拼成如图的图形,利用面积证明。S正方形CS正方形4ab(ab)方法二;已知:在ABC中,C=90,A、B、C的对边为a、b、c。求证:a2b2=c2。分析:左右两边的正方形边长相等,则两个正方形的面积相等。左边S=4abc2右边S=(a+b)2左边和右边面积相等,即4abc2=(a+b)2化简可得。方法三:以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上. RtEAD RtCBE, ADE = BEC. AED + ADE = 90, AED + BEC = 90. DEC = 18090= 90. DEC是一个等腰直角三角形,它的面积等于.又 DAE = 90, EBC = 90, ADBC. ABCD是一个直角梯形,它的面积等于. . .勾股定理的证明方法,达300余种。请学生利用业余时间探究。第三步:课堂练习1勾股定理的具体内容是: 。2如图,直角ABC的主要性质是:C=90,(用几何语言表示)两锐角之间的关系: ;若D为斜边中点,则斜边中线 ;若B=30,则B的对边和斜边: ;三边之间的关系: 3ABC的三边a、b、c,若满足b2= a2c2,则 =90; 若满足b2c2a2,则B是 角; 若满足b2c2a2,则B是 角。4根据如图所示,利用面积法证明勾股定理。参考答案1略;2A+B=90;CD=AB;AC=AB;AC2+BC2=AB2。3B,钝角,锐角;4提示:因为S梯形ABCD = SABE+ SBCE+ SEDA,又因为S梯形ACDG=(a+b)2,SBCE= SEDA= ab,SABE=c2, (a+b)2=2 abc2。第四步:课后练习1已知在RtABC中,B=90,a、b、c是ABC的三边,则c= 。(已知a、b,求c)a= 。(已知b、c,求a)b= 。(已知a、c,求b)2如下表,表中所给的每行的三个数a、b、c,有abc,试根据表中已有数的规律,写出当a=19时,b,c的值,并把b、c用含a的代数式表示出来。3、4、532+42=525、12、1352+122=1327、24、2572+242=2529、40、4192+402=41219,b、c192+b2=c23在ABC中,BAC=120,AB=AC=cm,一动点P从B向C以每秒2cm的速度移动,问当P点移动多少秒时,PA与腰垂直。4已知:如图,在ABC中,AB=AC,D在CB的延长线上。求证:AD2AB2=BDCD若D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西华澳商贸职业学院《数字媒介史》2023-2024学年第二学期期末试卷
- 三亚学院《英语写作Ⅲ》2023-2024学年第二学期期末试卷
- 福建医科大学《空竹》2023-2024学年第二学期期末试卷
- 东北林业大学《论文写作V》2023-2024学年第一学期期末试卷
- 西安医学院《中国古典舞基本功训练》2023-2024学年第二学期期末试卷
- 2025年油漆工劳务合同
- 三明医学科技职业学院《建筑装饰图形训练与解析》2023-2024学年第二学期期末试卷
- 亚克力雨棚施工方案
- 2025供货合同(电子产品)
- 烟感移位施工方案
- 两带来范文(通用十六篇)
- 综合录井仪工作原理演示教学课件
- 小学三年级诗词大会初赛比赛题目课件
- 房建监理大纲(共114)
- 国际工程招投标流程图
- 城市环境卫生工作物资消耗定额
- 液化气站三级安全教育培训试题
- 经济法实用教程(理论部分)(第八版)(何辛)案例分析及参考答案
- 532近代前夜的危机
- 病原微生物实验室生物安全备案专家意见表
- (精心整理)朱德熙_说 “的”
评论
0/150
提交评论