




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
附件A、三极管的Pspice模型参数 .Model NPN(PNP、LPNP) model parameters模型参数含 义单 位默认值备 注AF flicker noise exponent 1.0噪声指数BFideal maximum forward beta 100.0最大正向放大倍数BRideal maximum reverse beta 1.0最大反向放大倍数CJCbase-collector zero-bias p-n capacitancefarad0.0集电结电容CJEbase-emitter zero-bias p-n capacitancefarad0.0发射结电容CJS (CCS) Substrate zero-bias p-n capacitance farad0.0EG bandgap voltage (barrier height) eV1.11FCforward-bias depletion capacitor coefficient 0.5GAMMA epitaxial region doping factor 1E-11IKF (IK) corner for forward-beta high-current roll-offampinfiniteIKR corner for reverse-beta high-current roll-offampinfiniteIRB current at which Rb falls halfway to ampinfiniteIS transport saturation currentamp1E-16饱和电流ISC (C4) base-collector leakage saturation currentamp0.0集电结漏电流ISE (C2)base-emitter leakage saturation currentamp0.0发射结漏电流ISS substrate p-n saturation current amp0.0ITFtransit time dependency on Ic amp0.0KF flicker noise coefficient 0.0噪声系数MJC (MC) base-collector p-n grading factor0.33MJE (ME) base-emitter p-n grading factor 0.33MJS (MS) substrate p-n grading factor0.0NCbase-collector leakage emission coefficient 2.0集电结漏电系数NE base-emitter leakage emission coefficient1.5发射结漏电系数NF forward current emission coefficient 1.0正向电流系数NKhigh-current roll-off coefficient 0.5NRreverse current emission coefficient1.0NSsubstrate p-n emission coefficient 1.0PTF excess phase 1/(2pTF)Hz degree0.0QCOepitaxial region charge factor coulomb0.0RBzero-bias (maximum) base resistanceohm0.0最大基极电阻RBMminimum base resistance ohmRB最小基极电阻RCcollector ohmic resistanceohm0.0RCO epitaxial region resistance ohm0.0RE emitter ohmic resistance ohm0.0TF ideal forward transit time sec0.0正向传递时间TRideal reverse transit timesec 0.0反向传递时间TRB1RB temperature coefficient (linear) 0C -10.0RB的温度系数TRB2 RB temperature coefficient (quadratic) 0C -20.0TRC1 RC temperature coefficient (linear) 0C -10.0TRC2RC temperature coefficient (quadratic)0C -20.0TRE1 RE temperature coefficient (linear) 0C -10.0TRE2 RE temperature coefficient (quadratic) 0C -20.0TRM1 RBM temperature coefficient (linear) 0C -10.0TRM2RBM temperature coefficient (quadratic) 0C -20.0T_ABS absolute temperature 0C T_MEASURED measured temperature 0C T_REL_GLOBAL relative to current temperature 0C T_REL_LOCALrelative to AKO model temperature0C VAF (VA)forward Early voltage voltinfiniteVAR (VB) reverse Early voltage voltinfiniteVJC (PC) base-collector built-in potential volt0.75VJE (PE) base-emitter built-in potential volt0.75VJS (PS) substrate p-n built-in potential volt0.75VO carrier mobility knee voltage volt10.0VTFtransit time dependency on VbcvoltinfiniteXCJC fraction of CJC connected internally to Rb 1.0XCJC2fraction of CJC connected internally to Rb 1.0XTB forward and reverse beta temperature coefficient 0.0正向和反向放大倍数的温度影响系数XTFtransit time bias dependence coefficient 0.0传递时间系数XTI (PT) IS temperature effect exponent 3.0IS的温度影响系数附件B、 PSpice Goal Function特征函数功能说明Bandwidth (1, db_level)计算波形1从最大值下降db_level db的波形宽度。BPBW (1, db_level) Same as Bandwidth (1, db_level)CenterFreq (1, db_level) 计算波形1从最大值下降db_level db的两点的中心频率。Falltime (1)计算波形1的下降时间。Gain Margin (1,2)计算波形1的相位为-180。时,波形2的分贝值。 GenFall (1)类似于Falltime (1),但它的下降时间相对的y轴是起点于终点,而不是最大值与最小值。GenRise (1)与GenFall (1)类似,只是它是上升时间。HPBW (1, db_level)查找第一次比最大值低db_level db的x坐标。(上升沿)LPBW (1, db_level) 与HPBW类似,只是用于下降沿。Maxr (1, begin-x, end-x)查找区间的最大值。Overshoot (1)计算最大值与终点之间y轴坐标差与终点值的百分比。Peak (1, n_occur)查找第n-occur个峰值点的Y值Period (1)计算波形1的周期。Phase Margin (1,2)查找波形1在0分贝时波形2的相位。Pulsewidth (1)计算波形1的脉冲宽度。Risetime (1)计算波形1的上升时间。Swingr (1, begin-x, end-x) 计算在指定范围内,波形1的最大值与最小值之差。TPmW2 (1, Period)XatNthy (1, Y-value, n-occur)查找波形1上第n-occur个Y-value值时的X坐标值。XatNthYn(1,Y_value,n_occur)与XatNthy类似,但它查找的Y值必须在下降沿上。XatNthYp(1,Y_value,n_occur)与XatNthy类似,但它查找的Y值必须在上升沿上。XatNthYpct(1,Y_PCT,n_occur)查找第n-occur个Y轴值为Y轴范围的Y_pct%时的X轴值。YatX(1,X_value)查找X-value值处的Y值。YatXpct(1,X_pct)查找X轴值为X轴范围的X_pct%时的Y轴值。附件CModeling voltage-controlled and temperature-dependent resistorsAnalog Behavioral Modeling (ABM) can be used to model a nonlinear resistor through use of Ohm抯 law and tables and expressions which describe resistance. Here are some examples.Voltage-controlled resistorIf a Resistance vs. Voltage curve is available, a look-up table can be used in the ABM expression. This table contains (Voltage, Resistance) pairs picked from points on the curve. The voltage input is nonlinearly mapped from the voltage values in the table to the resistance values. Linear interpolation is used between table values.Let抯 say that points picked from a Resistance vs. Voltage curve are:VoltageResistance0.5251.0502.0100The ABM expression for this is shown in Figure 1.Figure 1 - Voltage controlled resistor using look-up tableTemperature-dependent resistorA temperature-dependent resistor (or thermistor) can be modeled with a look-up table, or an expression can be used to describe how the resistance varies with temperature. The denominator in the expression in Figure 2 is used to describe common thermistors. The TEMP variable in the expression is the simulation temperature, in Celsius. This is then converted to Kelvin by adding 273.15. This step is necessary to avoid a divide by zero problem in the denominator, when T=0 C.NOTE: TEMP can only be used in ABM expressions (E, G devices).Figure 3 shows the results of a DC sweep of temperature from -40 to 60 C. The y-axis shows the resistance or V(I1:-)/1A.Figure 2 - Temperature controlled resistorFigure 3 - PSpice plot of Resistance vs. Temperature (current=1A)Variable Q RLC networkIn most circuits the value of a resistor is fixed during a simulation. While the value can be made to change for a set of simulations by using a Parametric Sweep to move through a fixed sequence of values, a voltage-controlled resistor can be made to change dynamically during a simulation. This is illustrated by the circuit shown in Figure 5, which employs a voltage-controlled resistor. Figure 4 - Parameter sweep of control voltageThis circuit employs an external reference component that is sensed. The output impedance equals the value of the control voltage times the reference. Here, we will use Rref, a 50 ohm resistor as our reference. As a result, the output impedance is seen by the circuit as a floating resistor equal to the value of V(Control) times the resistance value of Rref. In our circuit, the control voltage value is stepped from 0.5 volt to 2 volts in 0.5 volt steps, therefore, the resistance between nodes 3 and 0 varies from 25 ohms to 100 ohms in 25 ohm-s
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025公司级安全培训考试试题及答案【夺冠系列】
- 2025年房产大数据合作协议书
- 2025-2030中国智能气动装置行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国无级变速传动装置行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国戏曲音乐文化行业市场发展现状及发展趋势与投资研究报告
- 2025-2030中国宠物监控摄像机行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国叶蔬菜种子行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国医疗移动解决方案行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国加热睫毛卷发器行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国冲裁机行业市场发展趋势与前景展望战略研究报告
- 变位齿轮与变位齿轮传动
- 二级精神病医院评价细则
- TGIA 004-2020 垃圾填埋场地下水污染防治技术指南
- GB/T 148-1997印刷、书写和绘图纸幅面尺寸
- 《思想道德与法治》 课件 第三章 弘扬中国精神
- 人教版小学数学四年级下册平均数教学教材课件
- (冀教版)二年级美术下册课件-洞的联想
- (更新版)中国移动政企行业认证题库大全-上(单选题汇总-共3部分-1)
- 中国古钱币课件5(宋元明清)
- 2022年小升初入学考试数学真题重庆市巴川中学初一新生入学水平测试
- 品质控制计划(QC工程图)
评论
0/150
提交评论