实验四线时不变离散时间系统的频域分析.doc_第1页
实验四线时不变离散时间系统的频域分析.doc_第2页
实验四线时不变离散时间系统的频域分析.doc_第3页
实验四线时不变离散时间系统的频域分析.doc_第4页
实验四线时不变离散时间系统的频域分析.doc_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Name:Chen yifan 20112121006Section:Laboratory Exercise 4LINEAR, TIME-INVARIANT DISCRETE-TIME SYSTEMS: FREQUENCY-DOMAIN REPRESENTATIONS4.1 TRANSFER FUNCTION AND FREQUENCY RESPONSEProject 4.1 Transfer Function AnalysisAnswers:Q4.1 The modified Program P3_1 to compute and plot the magnitude and phase spectra of a moving average filter of Eq. (2.13) for 0 w 2p is shown below:w=0:pi/511:2*pi;M=input(M= );num=ones(1,M)/M;h=freqz(num,1,w);subplot(2,1,1);plot(w/pi,abs(h);grid;title(H(ejomega)幅度谱);xlabel(omega/pi);ylabel(振幅);subplot(2,1,2);plot(w/pi,angle(h);grid;title(相位谱 H(ejomega);xlabel(omega/pi);ylabel(以弧度为单位的相位);This program was run for the following three different values of M and the plots of the corresponding frequency responses are shown below: The types of symmetries exhibited by the magnitude and phase spectra are due to -The type of filter represented by the moving average filter is M=3- M=10;M=20;The results of Question Q2.1 can now be explained as follows - By the graph, you can see that it represents a low-pass filter.Q4.2The plot of the frequency response of the causal LTI discrete-time system of Question Q4.2 obtained using the modified program is given below:w=0:pi/511:pi;num=0.15 0 -0.15;den=1 -0.5 0.7;h=freqz(num,den,w);subplot(2,1,1);plot(w/pi,abs(h);grid;title(H(ejomega)幅度谱);xlabel(omega/pi);ylabel(振幅);subplot(2,1,2);plot(w/pi,angle(h);grid;title(相位谱 H(ejomega);xlabel(omega/pi);ylabel(以弧度为单位的相位);The type of filter represented by this transfer function is - It says bandpass filter is obtained by diagrams can be BPFQ4.3The plot of the frequency response of the causal LTI discrete-time system of Question Q4.3 obtained using the modified program is given below:w=0:pi/511:pi;num=0.15 0 -0.15;den=0.7 -0.5 1h=freqz(num,den,w);subplot(2,1,1);plot(w/pi,abs(h);grid;title(H(ejomega)幅度谱);xlabel(omega/pi);ylabel(振幅);subplot(2,1,2);plot(w/pi,angle(h);grid;title(相位谱 H(ejomega);xlabel(omega/pi);ylabel(以弧度为单位的相位);The type of filter represented by this transfer function is - O causal linear time-invariant discrete time system frequency response, determine the type filterThe difference between the two filters of Questions 4.2 and 4.3 is - More on the topic of figure, the amplitude spectrum is the same, the phase spectrum, on the topic that is continuous, and kinds of phase jump line, .I shall choose the filter of Question Q4.3 for the following reason - the amplitude spectrum is the same, the phase spectrum, on the topic that is continuous, and kinds of phase jump line .Q4.6The pole-zero plots of the two filters of Questions 4.2 and 4.3 developed using zplane are shown below:w=0:pi/511:pi;num=0.15 0 -0.15;den=1 -0.5 0.7;h=zplane(num,den);w=0:pi/511:pi;num=0.15 0 -0.15;den=0.7 -0.5 1;h=zplane(num,den);From these plots we make the following observations: Different function, zero zero and pole pole figure with different relative position of the circle4.2 TYPES OF TRANSFER FUNCTIONSProject 4.2FiltersA copy of Program P4_1 is given below:clf;fc=0.25;n=-6.5:1:6.5;y=2*fc*sinc(2*fc*n); k=n+6.5;stem(k,y); title(N=13); axis(0 13 -0.2 0.6);xlabel(时间序号 n); ylabel(振幅); gridAnswers:Q4.7The plot of the impulse response of the approximation to the ideal lowpass filter obtained using Program P4_1 is shown below: clf; fc=0.25; n=-6.5:1:6.5; y=2*fc*sinc(2*fc*n);k=n+6.5; stem(k,y);title(N=13);axis(0 13 -0.2 0.6); xlabel(时间序号 n);ylabel(振幅);gridThe length of the FIR lowpass filter is -14 The statement in Program P4_1 determining the filter length is - n=-6.5:1:6.5;The parameter controlling the cutoff frequency is -Fc parameters control the cutoff frequencyQ4.8The required modifications to Program P4_1 to compute and plot the impulse response of the FIR lowpass filter of Project 4.2 with a length of 20 and a cutoff frequency of wc = 0.45 are as indicated below:clf;fc=0.45/(2*pi);n=-9.5:1:9.5;y=2*fc*sinc(2*fc*n);k=n+9.5;stem(k,y);title(N=20);axis(0 20 -0.2 0.6);xlabel(时间序号 n);ylabel(振幅);gridThe plot generated by running the modified program is given below:Q4.9The required modifications to Program P4_1 to compute and plot the impulse response of the FIR lowpass filter of Project 4.2 with a length of 15 and a cutoff frequency of wc = 0.65 are as indicated below:clf;fc=0.65/(2*pi);n=-7.5:1:6.5;y=2*fc*sinc(2*fc*n);k=n+7.5;stem(k,y);title(N=15);axis(0 14 -0.2 0.6);xlabel(时间序号 n);ylabel(振幅);gridThe plot generated by running the modified program is given below:Q4.11 A plot of the gain response of a length-2 moving average filter obtained using Program P4_2 is shown below:unction g,w=gain(num,den) -gain函数w=0:pi/255:pi;h=freqz(num,den,w);g=20*log10(abs(h);M=2; -滑动平均低通滤波器的增益响应程序num=ones(1,M)/M;g,w=gain(num,1);plot(w/pi,g);grid;axis(0 1 -50 0.5)xlabel(omega/pi);ylabel(单位为db的增益);title(M= ,num2str(M)From the plot it can be seen that the 3-dB cutoff frequency is at -3dB。Q4.12 The required modifications to Program P4_2 to compute and plot the gain response of a cascade of K length-2 moving average filters are given below: function g,w=gainlink(num,den) w=0:pi/255:pi;h=freqz(num,den,w);H=h.*h.*h;g=20*log10(abs(H);wc=2*acos(2(-1/(2*3)wc =0.9430wc =0.3*piThe plot of the gain response for a cascade of 3 sections obtained using the modified program is shown below:From the plot it can be seen that the 3-dB cutoff frequency of the cascade is at - wc=0.3*piQ4.19 A copy of Program P4_3 is given below:clf;b=1 -8.5 30.5 -63;num1=b 81 fliplr(b);num2=b 81 81 fliplr(b);num3=b 0 -fliplr(b);num4=b 81 -81 -fliplr(b);n1=0:length(num1) -1;n2=0:length(num2) -1;subplot(2,2,1); stem(n1,num1);xlabel(时间序号 n); ylabel(振幅); grid;title(1 型有限冲激响应滤波器);subplot(2,2,2); stem(n2,num2);xlabel(时间序号 n); ylabel(振幅); grid;title(2 型有限冲激响应滤波器);subplot(2,2,3); stem(n1,num3);xlabel(时间序号 n); ylabel(振幅); grid;title(3 型有限冲激响应滤波器);subplot(2,2,4); stem(n2,num4);xlabel(时间序号 n); ylabel(振幅); grid;title(4 型有限冲激响应滤波器);pausesubplot(2,2,1); zplane(num1,1);title(1 型有限冲激响应滤波器);subplot(2,2,2); zplane(num2,1);title(2 型有限冲激响应滤波器);subplot(2,2,3); zplane(num3,1);title(3 型有限冲激响应滤波器);subplot(2,2,4); zplane(num4,1);title(4 型有限冲激响应滤波器);disp(1 型有限冲激响应滤波器的零点是);disp(roots(num1);disp(2 型有限冲激响应滤波器的零点是);disp(roots(num2);disp(3 型有限冲激响应滤波器的零点是);disp(roots(num3);disp(4 型有限冲激响应滤波器的零点是);disp(roots(num4);The plots of the impulse responses of the four FIR filters generated by running Program P4_3 are given below:From the plots we make the following observations:Filter #1 is of length _8_ with a _80_ impulse response and is therefore a Type _ linear-phase FIR filter. Filter #2 is of length _10_ with a _80_ impulse response and is therefore a Type _ linear-phase FIR filter. Filter #3 is of length _8_ with a _60_ impulse response and is therefore a Type _ linear-phase FIR filter. Filter #4 is of length _10_ with a _80_ impulse response and is therefore a Type _ linear-phase FIR filter. From the zeros of these filters generated by Program P4_3 we observe that:Filter #1 has zeros at z = 2.9744,2.0888 ,0.9790 + 1.4110i,0.9790 - 1.4110i, 0.3319 + 0.4784i, 0.3319 - 0.4784i,0.4787,0.3362 Filter #2 has zeros at z = 3.7585 + 1.5147i,3.7585 - 1.5147i,0.6733 + 2.6623i,0.6733 - 2.6623i,-1.0000 ,0.0893 + 0.3530i,0.0893 - 0.3530i,0.2289 + 0.0922i,0.2289 - 0.0922iFilter #3 has zeros at z = 4.7627 ,1.6279 + 3.0565i,1.6279 - 3.0565i,-1.0000 ,1.0000 0.1357 + 0.2549i,0.1357 - 0.2549i,0.2100 Filter #4 has zeros at z = 3.4139 ,1.6541 + 1.5813i,1.6541 - 1.5813i,-0.0733 + 0.9973i,-0.0733 - 0.9973i,1.0000 ,0.3159 + 0.3020i,0.3159 - 0.3020i,0.2929 Plots of the phase response of each of these filters obtained using MATLAB are shown below: From these plots we conclude that each of these filters have _linear_ phase. Q4.20 The plots of the impulse responses of the four FIR filters generated by running Program P4_3 are given below:From the plots we make the following observations: Filter #1 is of length _8_ with a _80_ impulse response and is therefore a Type _ linear-phase FIR filter. Filter #2 is of length _10_ with a _80_ impulse response and is therefore a Type _ linear-phase FIR filter. Filter #3 is of length _8_ with a _5_ impulse response and is therefore a Type _ linear-phase FIR filter. Filter #4 is of length _10_ with a _80_ impulse response and is therefore a Type _ linear-phase FIR filter. From the zeros of these filters generated by Program P4_3 we observe that:Filter #1 has zeros at z = 2.3273 + 2.0140i,2.3273 - 2.0140i,-1.2659 + 2.0135i,-1.2659 - 2.0135i, -0.2238 + 0.3559i,-0.2238 - 0.3559i,0.2457 + 0.2126i,0.2457 - 0.2126iFilter #2 has zeros at z = 2.5270 + 2.0392i, 2.5270 - 2.0392i,-1.0101 + 2.1930i.-1.0101 - 2.1930i,-1.0000 ,-0.1733 + 0.3762i,-0.1733 - 0.3762i,0.2397 + 0.1934i,0.2397 - 0.1934iFilter #3 has zeros at z = -1.0000 ,0.2602 + 1.2263i,0.2602 - 1.2263i,1.0000 ,0.6576 + 0.7534i,0.6576 - 0.7534i,0.1655 + 0.7803i,0.1655 - 0.7803iFilter #4 has zeros at z = 2.0841 + 2.0565i,2.0841 - 2.0565i,-1.5032 + 1.9960i,-1.5032 - 1.9960i,1.0000 ,-0.2408 + 0.3197i,-0.2408 - 0.3197i,0.2431 + 0.2399i,0.2431 - 0.2399iPlots of the phase response of each of these filters obtained using MATLAB are shown below: From these plots we conclude that each of these filters have _linear_ phase. Answers:4.3 STABILITY TESTA copy of Program P4_4 is given below:clf;den=input(分母系数=);ki=poly2rc(den);disp(稳定性测试参数是);disp(ki);Answers:Q

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论