涡轮增压技术及算法详解.doc_第1页
涡轮增压技术及算法详解.doc_第2页
涡轮增压技术及算法详解.doc_第3页
涡轮增压技术及算法详解.doc_第4页
涡轮增压技术及算法详解.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

涡轮增压技术103这篇文章涉及较多的涡轮技术,包括描述压缩机的部分特性曲线图、计算发动机的增压比和空气质量流量,怎样在特性曲线图上绘制点来帮助你选择合适的涡轮增压器。把你的计算器放在手边吧。一 压缩机部分特性曲线图1 压缩机特性曲线图是详细描述压缩机压缩效率、空气质量流量范围、增压性能和涡轮转速等性能特性的一种图表。下面展示的是一幅典型的压气机特性曲线图:2 增压比增压比()被定义为出口处绝对压力除以进口处绝对压力注:=增压比、P2c=压气机出口绝对压力、P1c=压气机入口绝对压力3 在压气机入口和出口处使用绝对压力为计量单位非常有必要,一定要记住绝对压力的基础是14.7磅/平方英寸(在这个单位下“a”代表绝对压力)这被称为标准大气压力和标准情况。4 表压即计示压力(在计量单位为磅/平方英寸下“g”代表表压力)测量的是超过大气压力的大小,所以表压力在大气压力下应该显示为“0”。增压表测量的岐管压力是相对于大气压力的,这就是表压力。这对于决定压缩机出口处的压力是非常重要的。比如说增压表上读出的12磅/平方英寸意味着进气歧管的压力高于标准大气压力12磅/平方英寸。即:歧管压力26.7磅/平方英寸=12磅/平方英寸(表压力)+14.7磅/平方英寸(标准大气压力)5 这个条件下的增压比就能计算了:(26.7磅/平方英寸绝对压力)/14.7磅/平方英寸(标准大气压力)=1.826 然而这是在假定压气机入口处没有空气滤清器影响的情况下7 在决定增压比的时候,压气机入口处的绝对压力时常比环境压力小,特别是在高负荷时。为什么会这样呢?因为任何对空气的阻碍(这其中就包括空滤器管道的限制)都会对进气造成压力损耗,在决定增压比时,压气机上游的损耗都需要被计算。这种压力损耗在某些进气系统上可能达到或超过1磅/平方英寸的表显压力。在这种情况下压气机入口处压力应该如下取值:压气机入口绝对压力=14.7psia 1psig = 13.7psia8 带入最新的入口处压力进行增压比计算应该是下面这样(12 psig + 14.7 psia) / 13.7 psia = 1.95.9 以上计算方法很好,但是如果你不是在标准大气压下呢?在这种情况下,在计算工式中简单地用真实的大气压力替代标准大气压力14.7psi能够使计算更精确。在较高的海拔下会对增压比有显著的影响。比如说:在丹佛5000尺的海拔高度下,大气的平均压力在12.4psia,在这种情况下带入的进气真空度在压缩比计算时:(12psig + 12.4psia)/(12.4psia 1psig)=2.14(增压比)这样的结果和最原始计算的增压比1.82相比有很大的不同。10 从以上的例子总可以看出增压比取决于很多参数,不仅仅是增压器。1. 空气质量流量1 空气质量流量是在给定的一段时间空气流过压气机(或发动机)的量,常被表示为lb/min(磅/分钟)。质量流量可以使用物理方法测量。但是许多情况下在选择适当的涡轮过程中估计质量流量就已经足够了。2 许多人使用体积流量(表达为:立方英尺/分钟CFM或者ft3/min)代替质量流量。体积流量可以通过乘以空气密度转换成质量流量。标准大气压下空气密度为0.076 lb/ft3。3 质量流量我应该取多少?一般情况下涡轮增压的汽油引擎每1 lb/min质量流量可以产生9.5-10.5马力(飞轮上测得),所以如果一个引擎想要400马力那就要求空气质量流量为36-44 lb/min,这样的计算只能粗略地帮助你缩小增压器的选择范围。2. 喘振线1 喘振线是压气机特性曲线图的左边界,喘振线的左边是流动不稳定的区域。这一区域内压气机内气体从小波动变化到大波动。如果在这一区域内连续运转会因为涡轮的高轴向负载导致涡轮失效。2 根据经验在以下两种情况下涡轮喘振经常发生。第一种也是最严重的一种就是在负载过轻时的喘振。这种情况下很明确就是涡轮太大。喘振经常发生在增压后节气门快速关闭时。随着节气门快速关闭气体质量流量快速减少,但是节气门仍然高速旋转长生压力,导致喘振发生。这立刻驱使涡轮工作状态远远超出压气机特性曲线图左边的区域立刻导致喘振。一旦涡轮转速减到足够小减少增压并将工作状态移到稳定工作区域喘振将会减弱。这种情况常用一个泄压阀或者式旁通阀解决。泄压阀的作用是减少进气压力到大气压力以至于缓慢地降低气体质量流量,防止涡轮喘振发生,在使用循环旁通阀的情况下,气流会再循环到涡轮进气口。3 一个有旁通道的涡壳(看图2)组成了压气机汽缸的一部分,它的作用是通过允许气流不通过涡轮叶片直接通过涡轮,把喘振线移到更左边(看图3),防止出现喘振。这增加了额外的可用范围同时允许更大的增压器被使用在对气流有更高要求同时要求增压器不能出现喘振的条件下。涡壳旁通道有一个较小的副作用,那就是降低了压气机效率。3. 阻塞线阻塞线是压气机特性曲线图的右边界。对于Garrett增压器曲线来说,典型的阻塞线被定义为特性曲线图上效率低于58%的点。除此之外快速下降的增压效率经过这个点,涡轮转速将接近或者超过涡轮的极限转速。如果你确实或者打算让我轮工作超过这个极限转速,建议你还是换个大涡轮吧。4. 涡轮转速线涡轮转速线是许多固定的转速线。在这些线之间的涡轮转速可以通过插值法计算。随着涡轮转速的升高,增压比和、或气体质量流量增加。根据以上多余阻塞线的描述,涡轮速度线非常靠近特性曲线图的右边缘。一旦压气机的工作超过了阻塞极限,涡轮转速升高非常快,此时涡轮就已经超速了。5. 效能区域增压效能区域是指特性曲线图上一些代表增压器效率的任意点所形成的同心区域。靠近特性曲线图中心的最小的区域是效率最高的区域。随着转速离开这一区域,增压效率下降直到达到喘振或者阻塞区域。二 计算增压器特性曲线图数据这一部分将呈现,计算增压压力和气体质量流量的方法来达到所要求的目标马力。这些计算的数据将用来指导你选择合适的压气机和涡轮增压器。在选择过程中有明确的马力目标在心里是很重要的。除此之外增压压力和空气流量的计算也是必要的,把马力作为目标就要求选择适合的喷油器、喷油泵、调整器、以及发动机的其它部件。1. 估算要求的空气流量和增压压力达到既定的马力目标1 需要知道的参数:1) 马力目标2) 发动机排量3) 最大转速4) 环境条件(大气压力和温度,大气压力经常给定的数据时汞柱的尺寸,需要进行换算到psi)2 需要估算的值:1) 发动机的体积效率,现在常用的顶置四气门多缸发动机最大体积效率范围在95%99%,两气门发动机在85%95%。如果你有发动机的扭矩曲线,那么你可以用它计算出发动机不同转速体积效率。在一个调整好的发动机上,体积效率会随着转矩到达最高点。这个数可以被用来等比例计算其他转速的体积效率。一个典型的四气门发动机比两气门发动机有更高的体积效率。2) 进气歧管温度,具有高体积效率的压气机会带来更低的进气歧管温度。有中冷器的歧管温度一般在华氏100103度。没有中冷的歧管能够达到华氏175300度。3) 单位燃油消耗率(BSFC),描述产生每一马力所需要的燃料流率。对于涡轮增压汽油机来说燃油消耗率的大体在0.50.6之间变动,或者更高。它的单位是lb/(hp*hr)。燃油消耗率越低则说明产生相应功率时消耗燃油的速率越小。为了达到上述的最低燃油消耗率,需要选择好燃油种类和做好积极的匹配调整。在下面的方程式中我们将除以60将小时化为分钟计算。4) 为了绘制压气机的工况点,首先计算空气流率。Wa = HP * (A/F) * (BSFC/60) 其中Wa = 实际空气流率(lb/min) HP = 飞轮端目标马力 A/F = 空燃比 BSFC/60 = 单位燃油消耗率lb/(hp*hr)/603 举例我有一台发动机,我想要它输出400马力我想要选择空燃比为12,燃油消耗率为0.55,把这些参数带进方程式计算Wa = 400*12 *(0.55/60) = 44.0(lb/min)这样,我的压气机特性曲线图上就要有泵44磅气体每分钟的能力作为起始点。注意:我们在这个计算中没有输入任何发动机排量和转速。这就意味着对于任何发动机想要输出400马力那么他就需要44磅每分钟的泵气量(这是在假定任何发动机的燃油消耗率都是0.55的时候得出的)显然,一个小排量的发动机和大排量发动机相比就需要更多大的增压或者更高的转速。那么究竟需要多高的增压呢?4 计算达到目标马力或者进气量需要的歧管压力:MAPreq = 想要达到目标马力需要的歧管绝对压力Wa = 实际空气流率R = 气体常数 = 639.6Tm = 进气温度(F)VE = 体积效率N = 发动机转速(RPM)Vd = 发动机排量(CI)(CI = L * 61.02 )5 举例:继续上面举到的例子,假设一个2.0L的发动机其他参数如下:Wa=44lb/min(上一例子所得)Tm =130(F)VE = 体积效率92% (峰值)N = 发动机转速7200(RPM)Vd = 发动机排量122(CI),(CI = L * 61.02 ) =41.1psia(记住,这是绝对压力需要减去大气压力得到表压力)41.1 psia 14.7 psia (标准大气压) = 26.4 psig 表压力6 作为比较,让我们再计算更大排量的发动机5.0L Wa=44lb/min(上一例子所得)Tm =130(F)VE = 体积效率85% (峰值)(一台带推杆的V8 发动机)N = 发动机转速6000(RPM)Vd = 发动机排量4.942*61.2 = 302(CI),(CI = L * 61.02 )=21.6 psia(表压力为6.9)这个例子阐明了想要达到400马力,一个更大排量的发动机需要的歧管压力更低,但是仍然需要44lb/min的泵气量。这对于我们选择增压器有显著的指导作用。随着进气流量和歧管压力的计算,我们已经快要准备好在特性曲线图上绘制点了。下一步就是确定进气歧管和压气机之间有多少压降。最好的方法就是使用数据采集系统记录压降,但是多数情况下不现实。根据上面计算空气流量,中冷器特性、管尺寸、转弯的数量、节气门体的限制等,气管内的压降可以计算出来,在一个设计的很好的进气系统中,压降可能是1psi或者更少。在某些限制性的设置下,尤其是那些已经高于气流水平的设置下,压降会达到4psi或者更大。对于我们的举例,我们假设压降为2psi。所以在确定压气机出口处压力时,我们需要加上上面计算的2psi压降P2c = 压气机出口绝对压力 (psia) MAP = 歧管绝对压力 (psia) Ploss = 歧管到压气机的压降对2.0L发动机来说 = 43.1psi还记得我们在讲解压力比时讨论过的进气压力会因为进气系统形状和空滤器而降低吗,我们说过典型的压降大概是1psi,所以那将被带入到计算,比如说,假设我们在海平面,那么标准大气压力为14.7psi那么我们将减去1psi把大气压力换算成压气机入口处的压力。P1c = 压气机入口处压力 Pamb = 环境压力 Ploss = 进气系统压力降低值P1c = 14.7 1 = 13.7 psia这样一来我们就能计算增压比了对2.0L发动机来说 = 3.147 到现在为止,我们有足够的信息在压气机特性曲线图上画出这些工况点了。首先我们来试试GT2860RS这款涡轮,这款涡轮压气机叶片60mm,60的压气机叶轮。显而易见这款压气机叶轮太小了,两款发动机的工况点都远远超出了阻塞线。我们再来试试这款GT3076R发动机,压气机叶轮直径76mm,56对于2.0排量的发动机,这是一个比较合适的压气机。它工作的点略微接近压气机特性曲线的阻塞边界,但这可以得到附加的喘振裕度。发动机较低的转速将会处于高效率区同时增压器会较好的输出表现而且响应较快。对于5.0排量的发动机,这款压气机显然太小了,无需考虑。既然我们已经找到了可以接受针对2.0发动机的压气机,那么我们计算一个更低转速下压气机工作点在特性曲线上所在的位置,然后看一下发动机的运行曲线图。我们可以根据下面的方程来计算:我们将会根据经验或者理论推断使发动机工作在最大扭矩点。这种情况下我们首先选择5000rpm。式中:Wa=空气流量(磅/每分钟)MAP=歧管绝对压力=35.1磅/平方英寸R=气体常数=639.6Tm=歧管进气温度=130FVE=充气效率=0.98N=发动机转速=5000rpmVd=发动机排量=122立方英寸把这个点绘到GT3071R压气机的特性曲线上,如下图。这个图中几个点可以很好地代表在该增压水平下的压气机运行线,可以看出,非常适合该压气机的特性曲线。当发动机工作在5000转以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论