




已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2013年高考数学 易错点点睛与高考突破 专题13 概率与统计【难点突破】难点 1 与比赛有关的概率问题1甲、乙两个围棋队各5名队员按事先排好的顺序进行擂台赛,双方1号队员选赛,负者被淘汰,然后负方的2号队员再与对方的获胜队员再赛,负者又被淘汰,一直这样进行下去,直到有一方队员全被淘汰时,另一方获胜。假设每个队员实力相当,则甲方有4名队员被淘汰且最后占胜乙方的概率是_。难点 2 以概率与统计为背景的数列题1从原点出发的某质点m,按向量a=(0,1)移动的概率为,按向量b=(0,2)移动的概率为,设m到达点(0,n)的概率为pn,求pn12knpe=难点 3 利用期望与方差解决实际问题1四位母亲带领自己的孩子参加电视台“我爱妈妈”综艺节目,其中有一环节,先把四位小孩的眼睛蒙上,然后四位母亲分开站,而且站眘不许动、不许出声,最后让蒙上眼睛的小朋友找自己的妈妈,一位母亲的身边只许站一位小朋友,站对一对后亮起两盏红灯,站错不亮灯,求所亮灯数的期望值。2某商场根据天气预报来决定节目节日在商场内还有在商场外开展促销活动,统计资料表明,每一年五一节商场内的促销活动可获得经济效益2.5万元,商场外的促销活动如果不遇害到有雨天可获得经济效益12万元,如果促销活动遇到雨天则带来经济损失5万元,4月30日气象台报五一节当地有雨的概率是40%,问商场应该采用哪种促销方式?【易错点点睛】易错点 1 求某事件的概率1从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( ) 2甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格。(1)分别求甲、乙两人考试合格的概率;(2)求甲、乙两人至少有一人考试合格的概率。【变式训练】1、掷三枚骰子,求所得点数中最大点数是最小点数两倍的概率是 ( )3 、设棋子在正四面体abcd的表面从一个顶点向另外三个顶点移动是等可能的,现抛掷骰子根据其点数决定棋子是否移动,若抛出的点数是奇数,则棋子不动;若抛出的点数是偶数,棋子移动到另一顶点,若棋子的初始位置为a,则:(1)投掷2次骰子,棋子才到达顶点ba的概率;答案:“棋子才到达顶点b” 包括两种可能:(1)第一次掷出奇数,第二次掷出偶数;(2) 【特别提醒】对于等可能性事件的概率,一定要注意分子分母算法要一致,如分母考虑了顺序,则分子也应考虑顺序等;将一个较复杂的事件进行分解时,一定要注意各事件之间是否互斥,还要注意有无考虑全面;有时正面情况较多,应考虑利用公式p(a)=1-p();对于a、b是否独立,应充分利用相互独立的定义,只有a、b相互独立,才能利用公式p(ab)=p(a)p(b),还应注意独立与互斥的区别,不要两者混淆。易错点 2离散型随机变量的分布列、期望与方差1盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个。第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同)。记第一次与第二次取得球的标号之和为。(1)求随机变量的分布列;(2)求随机变量的期望。2某同学参加科普知识竞赛,需回答三个问题竞赛规则规定:每题回答正确得100分,回答不正确得-100分,假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响。(1)求这名同学回答这三个问题的总得分的概率分布和数学期望;(2)求这名同学总得分不为负分(即0)的概率。同理(2)的概率应为c120.520.40.6. p(=1)=c1+0.520.62+c120.520.40.6=0.3.同理可求p(=2),p(=3)。【正确解答】 由题意知的取值为0,1,2,3,4,它们的概率分别是:p(=0)=0.520.62=0.09,p(=1)=c120.520.62+c120.520.40.6=0.3,p(=2)=0.520.62+c12c120.520.40.6+0.520.42=0.37,【变式训练】1某商店搞促销活动规则如下:木箱内放有5枚白棋子和5枚黑棋子,顾客从中一次性任意取出5枚棋子,如果取出的5枚棋子中恰有5枚白棋子或4枚白棋子或3枚白棋子,则有奖品,奖励办法如下表:取出的棋子奖品5枚白棋子价值50元的商品4枚白棋子价值30元的商品3枚白棋子价值10元的商品如果取出的不是上述三种情况,则顾客需用50元购买商品。(1)求获得价值50元的商品的概率;2a、b两地之间有6条网线并联,它们能通过的信息量分别为:1,1,2,2,3, 3,现从中任取三条网线,设可通过的信息量为x,当可通过的信息量x6时,则保证信息畅通。(1)求线路信息畅通的概率;答案:解:(1)线路信息畅通包括三种情况,且它们彼此互斥:x=6; x=7;x=8.由已知p(x=6)=【特别提醒】离散型随机变量的分布列,期望与方差是概率统计的重点内容,对离散型随机变量及分布列,期望与方差的概念的关键。求离散型随机变量的分布列的步骤是:(1)根据问题实际找出随机变量的所有可能值xi;(2)求出各个取值的概率p(=xi)=pi;(3)画表填入相应数字,其中随机变量的取值很容易出现错误,解题时应认真推敲,对于概率通常利用所有概率之和是否等于1来进行检验。期望与方差的计算公式尤其是方差的计算公式较为复杂,要在理解的基础上进行记忆。易错点 3 统计1样本总体中有100个个体,随机编号为0,1,2,99,依编号顺序平均分成10个小组,组号依次为1,2,3,10,现用系统抽样方法抽取一个容量为10的样本,规定如果在第一组抽取的号码为m那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=6,则在第7组中抽取的号码是_.2某校为了了解学生的课外阅读情况,随机调查了50名学生得到他们在某一天各自课外阅读所用时间的数据,结果用图13-1所示的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )【变式训练】1 某厂生产的零件外径n(10,0.04),今从该厂上午生产的零件中各取一件,测得外径分别为9.9cm,9.3cm,则可认为 ( )a上午生产情况正常,下午生产情况异常b上午生产情况异常,下午生产情况正常c上、下午生产情况均正常d上、下午生产情况均不正常【特别提醒】对抽样方法,总体分布的估计,正态分布及线性回归近几年高考要求都不高,有的尚未考查,但作为新的知识点,高考也不会完全放弃,所以平时学习应以基础知识为主,重点学习抽样方法,正态分布的基础知识。抽样方法主要是概念的理解,正态分布主要是图像的性质。答案:213已知函数f(x)6x4(x1,2,3,4,5,6)的值域为集合a,函数g(x)2x1(x1,2,3,4,5,6)的值域为集合b,任意xab,则xab的概率是_6下图是根据部分城市某年6月份的平均气温(单位:)数据得到的样本频率分布直方图,其中平均气温的范围是20.5,26.5样本数据的分组为20.5,21.5),21.5,22.5),22.5,23.5),23.5,24.5),24.5,25.5),25.5,26.5已知样本中平均气温低于22.5的城市个数为11,则样本中平均气温不低于25.5的城市个数为_9在如图所示的算法流程图中,若输出i的值是4,则输入x的取值范围是_11根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值是_14.某公司为了改善职工的出行条件,随机抽取100名职工,调查了他们的居住地与公司间的距离(单位:千米)由其数据绘制的频率分布直方图如图所示,则样本中职工居住地与公司间的距离不超过4千米的人数为_16.如图,a地到火车站共有两条路径l1和l2,现随机抽取100位从a地到达火车站的人进行调查,调查结果如下:所用时间(分钟)10202030304040505060选择l1的人数612181212选择l2的人数0416164(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径l1和l2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径解:(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有121216444(人),17以下茎叶图记录了甲、乙两组各四名同学的植树棵数乙组记录中有一个数据模糊,无法确认,在图中以x表示(1)如果x8,求乙组同学植树棵数的平均数和方差;(2)如果x9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率解:(1)当x8时,由茎叶图可知,乙组同学的植树棵数是8,8,9,10,所以平均数为18. 已知与之间的几组数据如下表:x0123y1357 则与的线性回归方程必过 ( ) a b c d【答案】c【解析】由题意知:样本中心点一定在回归直线上,故选c.19.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国过氧化锌市场发展现状及前景趋势分析报告
- 2025-2030年中国调压箱市场发展状况及营销战略研究报告
- 2025-2030年中国装饰天花板制造行业运行状况及发展趋势预测报告
- 2025-2030年中国蜜蜂养殖与蜂产品加工行业运营状况与发展潜力分析报告
- 2025-2030年中国莴苣和菊苣行业运营状况与发展潜力分析报告
- 2025-2030年中国膜片式微孔曝气器行业前景趋势及发展潜力分析报告
- 2025-2030年中国聚萘二甲酸乙二醇酯pen行业运行趋势及投资战略研究报告
- 2025-2030年中国粗粮饮料市场发展趋势及前景调研分析报告
- 2025-2030年中国硝酸异辛酯行业运行状况及发展趋势分析报告
- 2025-2030年中国眼影市场运行现状及发展前景分析报告
- 3.1产业转移对区域发展的影响(第1课时) 【知识精研】高二地理课件(湘教版2019选择性必修2)
- 2025年医院实习协议书样本
- 2025年湖南工程职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2024年云南中烟工业有限责任公司招聘笔试真题
- 2024年山东轻工职业学院高职单招语文历年参考题库含答案解析
- 三一重工全面预算管理
- 小公司财务报销制度及报销流程
- 2022新教材苏教版科学5五年级下册全册教学设计
- 2024-2025学年全国中学生天文知识竞赛考试题库(含答案)
- 加利福尼亚批判性思维技能测试后测试卷班附有答案
- 工程结算书(完整版)
评论
0/150
提交评论