高中数学 2.3等差数列的前n项和教案 新人教A版必修5.doc_第1页
高中数学 2.3等差数列的前n项和教案 新人教A版必修5.doc_第2页
高中数学 2.3等差数列的前n项和教案 新人教A版必修5.doc_第3页
高中数学 2.3等差数列的前n项和教案 新人教A版必修5.doc_第4页
高中数学 2.3等差数列的前n项和教案 新人教A版必修5.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

等差数列的前n项和(第一课时)说课稿一、教材分析1教学内容:本节课是高中人教a版必修5第二章第三节第一课时的内容。主要研究等差数列的前n项和公式的推导及其简单应用。2地位与作用本节课是前面所学知识的延续和深化,又是后面学习“等比数列及其前n项和”的基础和前奏。学好了本节课的内容,既能加深对数列有关概念的理解,又能为后面学好等比数列及数列求和提供方法。同时还蕴涵着深刻的数学思想方法(倒序相加法、数形结合、方程思想),因此“等差数列的前n项和”无论是在数列这一章中还是在高中数学中都有极为重要的位置,具有承上启下的重要作用。二、学情分析1.知识基础:高二年级学生已学习了数列及等差数列有关基础知识,并且在初中已了解特殊的数列求和及小高斯的故事。2.认知水平与能力:高二学生已初步具有抽象逻辑思维能力,能在教师的引导下独立地解决问题。3. 学生特点:平行班里有不少学生基础不差且思维较活跃,能带动其它学生积极学习,但处理抽象问题的能力还有待进一步提高。三、目标分析知识技能目标:1.掌握等差数列前n项和公式;2.掌握等差数列前n项和公式的推导过程;3.会简单运用等差数列前n项和公式.过程与方法:1通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;2. 通过公式的运用体会方程的思想。情 感 态 度:结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化.教学重点、难点1、教学重点:等差数列前n项和公式的推导和应用.2、教学难点:在等差数列前n项和公式的推导过程中体会倒序相加的思想方法.3、重点、难点解决策略:本课在设计上采用了由特殊到一般、从具体到抽象的教学策略利用数形结合、类比归纳的思想,层层深入,通过学生自主探究,分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。四. 教法、学法本课采用“探究发现”教学模式教师的教法突出活动的组织设计与方法的引导.学生的学法突出探究、发现与交流.五.教学过程教学过程设计为六个教学环节:(如下图)指导思想:就是从特殊到一般,由具体到抽象,类比归纳总结出指导等差数列前n项和公式的倒序相加法,然后引导学生认识和熟记公式并活应用,同时在应用过程中体会方程的思想方法。【教学过程】一、明确数列前n项和的定义,开门见山确定本节课中心任务:对于数列an:a1,a2,a3,an,我们称a1+a2+a3+an为数列an的前n项和,用sn表示,记 sn=a1+a2+a3+an,如 s1 =a1, s7 =a1+a2+a3+a7二、问题牵引,探究发现问题1:(播放媒体资料情景引入)印度泰姬陵世界七大奇迹之一。传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见图),奢靡之程度,可见一斑。你知道这个图案一共花了多少颗宝石吗?即: s100=1+2+3+100=?著名数学家高斯小时候就会算,闻名于世,那么小高斯是如何快速地得出了答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。同学们讨论后发言总结:(高斯用的是偶数个相加时首尾配对,变不同数的加法运算为相同数的乘法运算大大提高效率。)特点: 首项与末项的和: 1100101, 第2项与倒数第2项的和: 299 101, 第3项与倒数第3项的和: 398 101, 第50项与倒数第50项的和: 5051101,于是所求的和是: 101505050。1+2+3+ +100= 10150 = 5050探索与发现1:第1层到21层一共有多少颗圆宝石呢?即计算s21=1+2+3+ +21的值,在这个过程中让学生发现当项数为奇数时,首尾配对出现了问题,通过动画演示引导帮助学生思考解决问题的办法,为引出倒序相加法做铺垫。动画演示:假如再给你同样多的珠宝,在原图的基础上你能设计出一个什么样的图案呢?把“全等三角形”倒置,与原图构成平行四边形。平行四边形中的每行宝石的个数均为21个,共21行。有什么启发? 1 + 2 + 3 + +20 +21 21 + 20 + 19 + + 2 +1s21=1+2+3+21=(21+1)212=231探索与发现2:第5层到12层一共有多少颗圆宝石?(动画演示帮助学生体会出方法)s8=5+6+7+8+9+10+11+12=【设计意图】进一步引导学生探究项数为偶数的等差数列求和时倒序相加是否可行。从而得出任意项数的等差数列求和都可用倒序相加法,确立倒序相加的思想和方法!问题2:等差数列1,2,3,n, 的前n项和怎么求? 即:sn =123n 【设计意图】进一步强化倒序相加法的理解和运用,为一般的等差数列求和打基础。问题3:对于一般的等差数列an首项为a1,公差为d,它的前n项和公式sn如何推导呢? 即: =a1+a2+a3+an (1)+(2)可得:2(公式一)公式变形:将代入可得:(公式二)【设计意图】学生在前面的探究的基础上水到渠成顺理成章很快就可以推导出一般等差数列的前n项和公式,从而完成本节课的中心任务。在这个过程中放手让学生自主推导,同时也复习等差数列的通项公式和基本性质。三、公式的认识与理解:1、两个公式的认识: (公式一)(公式二)【设计意图】1、探究两个公式的区别与联系,明确若a1,d, n, an中已知三个量就可以求出sn 。2、明确两个公式共涉及五个量a1,d, n, an 和sn,“知三”可“求二”。探索与发现3:等差数列前n项和公式与梯形面积公式有什么联系?【设计意图】帮助学生类比联想,拓展思维,增加兴趣,强化记忆。四、公式应用、讲练结合1、练一练:根据下列各题中的条件,求相应的等差数列an的sn :(1) a1=5,an=95,n=10解:500(2) a1=100,d=2,n=50 解:【设计意图】熟悉并强化公式的理解和应用。2、例题1:2000年11月14日教育部下发了.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间,在全市中小学建成不同标准的校园网. 据测算,2001年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?解:设从2001年起第n年投入的资金为an,根据题意,数列an是一个等差数列,其中 a1=500, d=50那么,到2010年(n=10),投入的资金总额为答: 从2001年起的未来10年内,该市在“校校通”工程中的总投入是7250万元。【设计意图】让学生体会数列知识在生活中的应用及简单的数学建模思想方法。3、例题2:已知一个等差数列an的前10项的和是310,前20项的和是1220,由这些条件可以确定这个等差数列的前n项和的公式吗?解:法1:由题意知 ,代入公式得: 解得,法2:由题意知 ,代入公式得:,即,得,故由得故【设计意图】掌握并能灵活应用公式并体会方程的思想方法。4、反馈达标:练习1:在等差数列an中,a1=20, an=54,sn =999,求n.解:由解n=27练习2: 已知an为等差数列,,求公差。解:由公式得 即d=2【设计意图】进一强化求和公式的灵活应用及化归的思想(化归到首项和公差)。五、归纳总结 分享收获:(鼓励学生大胆总结发言,培养总结和表达能力)1、倒序相加法求和的思想及应用;2、等差数列前n项和公式的推导过程;3、掌握等差数列的两个求和公式,; 4、前n项和公式的灵活应用及方程的思想。六、作业布置:(一)书面作业:1.已知等差数列an,其中d=2,n=15, an =-10,求a1及sn。2.在a,b之间插入10个数,使它们同这两个数成等差数列,求这10个数的和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论