高中数学 第二章 圆锥曲线与方程 2.4.1 抛物线的标准方程课件 苏教版选修11.ppt_第1页
高中数学 第二章 圆锥曲线与方程 2.4.1 抛物线的标准方程课件 苏教版选修11.ppt_第2页
高中数学 第二章 圆锥曲线与方程 2.4.1 抛物线的标准方程课件 苏教版选修11.ppt_第3页
高中数学 第二章 圆锥曲线与方程 2.4.1 抛物线的标准方程课件 苏教版选修11.ppt_第4页
高中数学 第二章 圆锥曲线与方程 2.4.1 抛物线的标准方程课件 苏教版选修11.ppt_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2 4 1抛物线的标准方程 第2章 2 4抛物线 1 掌握抛物线的定义及其焦点 准线的概念 2 会求简单的抛物线方程 学习目标 栏目索引 知识梳理自主学习 题型探究重点突破 当堂检测自查自纠 知识梳理自主学习 知识点一抛物线的定义平面内到一个定点f和一条定直线l f不在l上 的的点的轨迹叫做 定点f叫做抛物线的 定直线l叫做抛物线的 答案 距离相等 抛物线 焦点 准线 知识点二抛物线标准方程的几种形式 答案 y2 2px p 0 y2 2px p 0 答案 x2 2py p 0 x2 2py p 0 答案焦点到准线的距离 答案不一定 当直线l经过点f时 点的轨迹是过定点f且垂直于定直线l的一条直线 l不经过点f时 点的轨迹是抛物线 思考 1 抛物线的标准方程y2 2px p 0 中p的几何意义是什么 2 平面内到一定点距离与到一定直线距离相等的点的轨迹是抛物线吗 返回 答案 题型探究重点突破 题型一求抛物线的标准方程例1分别求满足下列条件的抛物线的标准方程 1 焦点为 2 0 解析答案 2 准线为y 1 解析答案 3 过点a 2 3 解析答案 反思与感悟 所求抛物线的标准方程为y2 5x或y2 5x或x2 5y或x2 5y 求抛物线方程 通常用待定系数法 若能确定抛物线的焦点位置 则可设出抛物线的标准方程 求出p值即可 若抛物线的焦点位置不确定 则要分情况讨论 焦点在x轴上的抛物线方程可设为y2 ax a 0 焦点在y轴上的抛物线方程可设为x2 ay a 0 反思与感悟 跟踪训练1分别求满足下列条件的抛物线的标准方程 1 过点 3 4 解析答案 解方法一 点 3 4 在第四象限 设抛物线的标准方程为y2 2px p 0 或x2 2p1y p1 0 把点 3 4 分别代入y2 2px和x2 2p1y 得 4 2 2p 3 32 2p1 4 解析答案 方法二 点 3 4 在第四象限 抛物线的方程可设为y2 ax a 0 或x2 by b 0 2 焦点在直线x 3y 15 0上 解析答案 解令x 0得y 5 令y 0得x 15 抛物线的焦点为 0 5 或 15 0 所求抛物线的标准方程为x2 20y或y2 60 x 题型二抛物线定义的应用例2如图 已知抛物线y2 2x的焦点是f 点p是抛物线上的动点 又有点a 3 2 求pa pf的最小值 并求此时p点坐标 解析答案 反思与感悟 解如图 作pq l于q 由定义知 解析答案 反思与感悟 点p坐标为 2 2 反思与感悟 抛物线的定义在解题中的作用 就是灵活地对抛物线上的点到焦点的距离与到准线距离进行转化 另外要注意平面几何知识的应用 如两点之间线段最短 三角形中三边间的不等关系 点与直线上点的连线垂线段最短等 反思与感悟 解析答案 跟踪训练2已知点p是抛物线y2 2x上的一个动点 则点p到点a 0 2 的距离与p到该抛物线的准线的距离之和的最小值为 解析如图 由抛物线定义知pa pq pa pf 则所求距离之和的最小值转化为求pa pf的最小值 则当a p f三点共线时 pa pf取得最小值 pa pf min af 题型三抛物线的实际应用例3如图所示 一辆卡车高3m 宽1 6m 欲通过断面为抛物线形的隧道 已知拱口ab宽恰好是拱高cd的4倍 若拱口宽为am 求能使卡车通过的a的最小整数值 解析答案 反思与感悟 解以拱顶为原点 拱高所在直线为y轴 建立如图所示的平面直角坐标系 设抛物线方程为x2 2py p 0 点b在抛物线上 反思与感悟 解得a 12 21 a取整数 a的最小整数值为13 以抛物线为数学模型的实例很多 如拱桥 隧道 喷泉等 抛物线的应用主要解题步骤 1 建立平面直角坐标系 求抛物线的方程 2 利用方程求点的坐标 反思与感悟 跟踪训练3如图所示 一隧道内设双行线公路 其截面由长方形的三条边和抛物线的一段构成 为保证安全 要求行驶车辆顶部 设为平顶 与隧道顶部在竖直方向上高度之差至少要有0 5米 解析答案 1 以隧道的顶点为原点o 其对称轴所在的直线为y轴 建立平面直角坐标系 如图 求该抛物线的方程 所以该抛物线的方程为x2 5y 解析答案 2 若行车道总宽度ab为7米 请计算通过隧道的车辆限制高度为多少米 精确到0 1米 解设车辆高h米 则db h 0 5 米 故d 3 5 h 6 5 代入方程x2 5y 解得h 4 05米 所以车辆通过隧道的限制高度为4 0米 解析答案 分类讨论思想的应用 思想方法 例4已知抛物线的顶点在原点 焦点在坐标轴上 且此抛物线上的一点a m 3 到焦点f的距离为5 求m的值及抛物线的标准方程 解后反思 返回 解析答案 解后反思 解析答案 解后反思 解后反思 解后反思 由于抛物线的标准方程有四种形式 当焦点的位置不确定时 往往要分类讨论 返回 当堂检测 1 2 3 4 5 解析答案 y 2 1 2 3 4 5 2 过抛物线y2 8x的焦点作倾斜角为45 的直线 则被抛物线截得的弦长为 解析答案 1 2 3 4 5 解析由y2 8x得焦点坐标为 2 0 由此直线方程为y x 2 设交点为a x1 y1 b x2 y2 由方程知x1 x2 12 弦长ab x1 x2 p 12 4 16 答案16 1 2 3 4 5 解析答案 y2 8x 1 2 3 4 5 解析答案 4 已知直线l1 4x 3y 6 0和直线l2 x 1 则抛物线y2 4x上一动点p到直线l1和直线l2的距离之和的最小值是 解析易知直线l2 x 1恰为抛物线y2 4x的准线 如图所示 动点p到l2 x 1的距离可转化为pf的长度 其中f 1 0 为抛物线y2 4x的焦点 由图可知 距离和的最小值 即f到直线l1的距离 2 1 2 3 4 5 解析答案 1 2 3 4 5 答案4 课堂小结 1 抛物线的定义中不要忽略条件 点f不在直线l上 2 确定抛物线的标准方程 从形式上看 只需

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论