




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习资料收集于网络,仅供参考中考一次函数压轴题专题训练一10如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(4,0),点B的坐标为(0,b)(b0) P是直线AB上的一个动点,作PCx轴,垂足为C记点P关于y轴的对称点为P(点 P不在y轴上),连接P P,PA,PC设点P的横坐标为a(1)当b=3时,求直线AB的解析式;(2)在(1)的条件下,若点P的坐标是(1,m),求m的值;(3)若点P在第一像限,是否存在a,使PCA为等腰直角三角形?若存在,请求出所有满足要求的a的值;若不存在,请说明理由11如图,四边形OABC为直角梯形,BCOA,A(9,0),C(0,4),AB=5 点M从点O出发以每秒2个单位长度的速度向点A运动;点N从点B同时出发,以每秒1个单位长度的速度向点C运动其中一个动点到达终点时,另一个动点也随之停止运动(1)求直线AB的解析式;(2)t为何值时,直线MN将梯形OABC的面积分成1:2两部分;(3)当t=1时,连接AC、MN交于点P,在平面内是否存在点Q,使得以点N、P、A、Q为顶点的四边形是平行四边形?如果存在,直接写出点Q的坐标;如果不存在,请说明理由14如图,在直角坐标平面中,RtABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cosABC=,点P在线段OC上,且PO、OC的长是方程x215x+36=0的两根(1)求P点坐标;(2)求AP的长;(3)在x轴上是否存在点Q,使四边形AQCP是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由15已知函数y=(6+3m)x+(n4)(1)如果已知函数的图象与y=3x的图象平行,且经过点(1,1),先求该函数图象的解析式,再求该函数的图象与y=mx+n的图象以及y轴围成的三角形面积;(2)如果该函数是正比例函数,它与另一个反比例函数的交点P到轴和轴的距离都是1,求出m和n的值,写出这两个函数的解析式;(3)点Q是x轴上的一点,O是坐标原点,在(2)的条件下,如果OPQ是等腰直角三角形,写出满足条件的点Q的坐标16如图,RtOAC是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点C在y轴上,OA和OC是方程的两根(OAOC),CAO=30,将RtOAC折叠,使OC边落在AC边上,点O与点D重合,折痕为CE(1)求线段OA和OC的长;(2)求点D的坐标;(3)设点M为直线CE上的一点,过点M作AC的平行线,交y轴于点N,是否存在这样的点M,使得以M、N、D、C为顶点的四边形是平行四边形?若存在,请求出符合条件的点M的坐标;若不存在,请说明理由25如图,直线l1的解析表达式为:y=3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C(1)求直线l2的解析表达式;(2)求ADC的面积;(3)在直线l2上存在异于点C的另一点P,使得ADP与ADC的面积相等,求出点P的坐标;(4)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由26如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(6,0),P(x,y)是直线y=x+6上一个动点(1)在点P运动过程中,试写出OPA的面积s与x的函数关系式;(2)当P运动到什么位置,OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交x轴、y轴于C、D是否存在这样的点P,使CODFOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由27如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C(1)若直线AB解析式为y=2x+12,求点C的坐标;求OAC的面积(2)如图,作AOC的平分线ON,若ABON,垂足为E,OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由1. 分析:(1)利用待定系数法即可求得函数的解析式;(2)把(1,m)代入函数解析式即可求得m的值;可以证明PPDACD,根据相似三角形的对应边的比相等,即可求解;(3)点P在第一像限,若使PCA为等腰直角三角则APC=90或PAC=90或PCA=90就三种情况分别讨论求出出所有满足要求的a的值即可解答:解:(1)设直线AB的解析式为y=kx+3,把x=4,y=0代入得:4k+3=0,k=,直线的解析式是:y=x+3,由已知得点P的坐标是(1,m),m=1+3=;(2)PPAC,PPDACD,=,即=,a=;(3)当点P在第一象限时, 1)若APC=90,PA=PC(如图1)过点P作PHx轴于点HPP=CH=AH=PH=AC2a=(a+4),a=,2)若PAC=90,PA=C,则PP=AC,2a=a+4,a=4,3)若PCA=90,则点P,P都在第一象限内,这与条件矛盾PCA不可能是以C为直角顶点的等腰直角三角形所有满足条件的a的值为a=4或2. 分析:(1)作BDOA于点D,利用勾股定理求出AD的值,从而求出B点的坐标,利用待定系数法求出直线AB的解析式;(2)梯形面积分为1:2的两部分,要注意分两种去情况进行分别计算,利用面积比建立等量关系求出t的值(3)M、N两点的坐标求出MN的解析式和AC的解析式,利用直线与方程组的关系求出P点坐标,利用三角形全等求出Q、Q1的坐标,求出直线Q1P、QN的解析式,再求出其交点坐标就是Q2的坐标解答:解:(1)作BD0A于点DBD=4,AB=5,由勾股定理得AD=3 OD=6 B(6,4)设直线AB的解析式为:y=kx+b,由题意得 解得: 直线AB的解析式为:;(2)设t秒后直线MN将梯形OABC的面积分成1:2两部分,则BN=t,CN=6t,OM=2t,MA=92t当S四边形OMNC:S四边形NMAB=1:2时 解得:t=1(舍去) 当S四边形OMNC:S四边形NMAB=2:1时, 解得t=4 t=4时,直线MN将梯形OABC的面积分成1:2两部分(3)存在满足条件的Q点,如图:Q(9.5,2),Q1(8.5,2),Q2(0.5,6)3. 分析:(1)通过解方程x215x+36=0,得OP、OC的长度,即可推出P点的坐标,(2)根据直角三角形的性质,推出CosABC=CosACO=,结合已知条件即可推出AP的长度,(3)首先设出Q点的坐标,然后根据,即可求出OQ的长度,即可得Q点的坐标,然后根据P和Q点的坐标即可推出直线PQ的解析式解答:解:(1)PO、OC的长是方程x215x+36=0的两根,OCPO,PO=3,OC=12(2分)P(0,3)(2分)(2)在RtOBC与RtAOC中,cosABC=cosACO, (1分)设CO=4K,AC=5K,CO=4K=12,K=3 AO=3K=9,A(9,0)(2分)AP=(1分)(3)设在x轴上存在点Q(x,0)使四边形AQCP是梯形,则APCQ,OA=9,OP=3,OC=12,OQ=36,则Q(36,0)(2分),设直线PQ的解析式为y=kx+b,将点P(0,3),Q(36,0)代入,得,解得: 所求直线PQ的解析式为y=x3(2分)4. 分析:(1)根据所给的条件求出m,n的值,然后确定这两条直线,求出它们与y轴的交点坐标,以及这两条直线的交点坐标,从而求出面积(2)根据正比例函数可求出n的值,以及根据P点坐标的情况,确定函数式,P点的坐标有两种情况(3)等腰三角形的性质,有两边相等的三角形是等腰三角形,根据此可确定Q的坐标解答:解:(1)据题意得6+3m=3解得m=1 把x=1,y=1代入y=3x+n4得n=8(1分)已知函数为y=3x+4当x=0时y=4,A(0,4) 另一函数y=x+8当x=0时y=8,B(0,8)(2分)AB=4解得,C(1,7)(1分) (1分)(2)据题意可知n=4 设正比例函数y=(6+3m)x(6+3m0),反比例函数根据正反比例函数的图象可知,当点P的坐标为(1,1)或(1,1)时y=x,当点P的坐标为(1,1)或(1,1)时,y=x,(3分);(3)Q(1,0)Q(2,0)(2分)5. 分析:(1)通过解答题目中的一元二次方程的根就是OA、OC的长(2)由折纸可以知道CD=OC,从而求出AD,作DFOA于F解直角三角形可以求出D点的坐标(3)存在满足条件的M点,利用三角形全等和平行线等分线段定理可以求出M点对应的坐标解答:解:(1)OAOCOA=3,OC=;(2)在RtAOC中,由勾股定理得:AC=2 由轴对称得:CO=CD=AD=,作DFOA,且CAO=30 DF=,由勾股定理得:AF= OF=,OF=AFD;(3)M1N1AC,N1M1F=ADF,FN1M1=FAD OF=AF ADFN1M1FM1F=DF=,N1F=AF= ,作MGOA,四边形MCDN和四边形CN1M1D是平行四边形 MC=ND,ND=CM1MC=CM1GO=OF=,OE=1GE= EOCEGM 解得:MG= 6. 分析:(1)结合图形可知点B和点A在坐标,故设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;(2)已知l1的解析式,令y=0求出x的值即可得出点D在坐标;联立两直线方程组,求出交点C的坐标,进而可求出SADC;(3)ADP与ADC底边都是AD,面积相等所以高相等,ADC高就是C到AD的距离;(4)存在;根据平行四边形的性质,可知一定存在4个这样的点,规律为H、C坐标之和等于A、D坐标之和,设出代入即可得出H的坐标解答:解:(1)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,直线l2的解析表达式为 ;(2)由y=3x+3,令y=0,得3x+3=0,x=1,D(1,0);由 ,解得 ,C(2,3),AD=3,SADC=3|3|=;(3)ADP与ADC底边都是AD,面积相等所以高相等,ADC高就是C到AD的距离,即C纵坐标的绝对值=|3|=3,则P到AB距离=3,P纵坐标的绝对值=3,点P不是点C,点P纵坐标是3,y=1.5x6,y=3,1.5x6=3 x=6,所以点P的坐标为(6,3);(4)存在;(3,3)(5,3)(1,3)7. 分析:(1)求出P的坐标,当P在第一、二象限时,根据三角形的面积公式求出面积即可;当P在第三象限时,根据三角形的面积公式求出解析式即可;(2)把s的值代入解析式,求出即可;(3)根据全等求出OC、OD的值,如图所示,求出C、D的坐标,设直线CD的解析式是y=kx+b,把C(6,0),D(0,8)代入,求出直线CD的解析式,再求出直线CD和直线y=x+6的交点坐标即可;如图所示,求出C、D的坐标,求出直线CD的解析式,再求出直线CD和直线y=x+6的交点坐标即可解答:解:(1)P(x,y)代入y=x+6得:y=x+6,P(x,x+6),当P在第一、二象限时,OPA的面积是s=OAy=|6|(x+6)=x+18(x8)当P在第三象限时,OPA的面积是s=OA(y)=x18(x8)答:在点P运动过程中,OPA的面积s与x的函数关系式是s=x+18(x8)或s=x18(x8)解:(2)把s=代入得:=+18或=x18,解得:x=6.5或x=6(舍去),x=6.5时,y=,P点的坐标是(6.5,)(3)解:假设存在P点,使CODFOE,如图所示:P的坐标是(,); 如图所示:P的坐标是(,)存在P点,使CODFOE,P的坐标是(,)或(,)8.分析:(1)联立两个函数式,求解即可得出交点坐标,即为点C的坐标欲求OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可(2)在OC上取点M,使OM=OP,连接MQ,易证POQMOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又ABOP,可得AEO=CEO,即证AEOCEO(ASA),又OC=OA=4,利用OAC的面积为6,即可得出AM=3,AQ+PQ存在最小值,最小值为3解答:解:(1)由题意,(2分)解得所以C(4,4)(3分)把y=0代入y=2x+12得,x=6,所以A点坐标为(6,0),(4分)所以(6分)(2)存在;由题意,在OC上截取OM=OP,连接MQ,OP平分AOC,一朵花 一颗心 一条毛巾AOQ=COQ,菜园里有白菜,有南瓜,还有茄子。又OQ=OQ,R S T U V W X Y ZPOQMOQ(SAS),(7分)PQ=MQ,(9)司马
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 知识产权在区域经济发展中的重要性分析试题及答案
- 院财务管理试题及答案
- 自考刑事诉讼试题及答案
- 设计绘图考试题及答案
- 药物释放动力学考核试题及答案
- 阿里ios面试题及答案
- 网络教育与传统教育试题及答案
- 药学会计与管理实践分析试题及答案
- 高素质干部面试题及答案
- 证书考试助推激光技术工程师职业生涯试题及答案
- 跳汰机操作手册
- YS/T 310-2008热镀用锌合金锭
- GB/T 9119-2010板式平焊钢制管法兰
- GB/T 4956-2003磁性基体上非磁性覆盖层覆盖层厚度测量磁性法
- GB/T 27867-2011石油液体管线自动取样法
- GB/T 19466.4-2016塑料差示扫描量热法(DSC)第4部分:比热容的测定
- 2023年漳州龙海市广播电视台(融媒体中心)招聘笔试题库及答案解析
- 10000中国普通人名大全
- 最新苏教版三年级数学下册:教材分析课件
- C语言程序设计说课课件
- 地基基础规范8章
评论
0/150
提交评论