外文翻译--基于有限元法旋耕机传动齿轮应力分析_第1页
外文翻译--基于有限元法旋耕机传动齿轮应力分析_第2页
外文翻译--基于有限元法旋耕机传动齿轮应力分析_第3页
外文翻译--基于有限元法旋耕机传动齿轮应力分析_第4页
外文翻译--基于有限元法旋耕机传动齿轮应力分析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基于有限元法,旋耕机传动齿轮应力分析 穆罕默德 托帕克 库萨特 西里克 丹妮资 耶尔马兹 易卜拉欣 阿辛琪 阿克登尼基大学农学院,安塔利亚,土耳其 农业机械部 2008年 8月 12日 摘要 旋耕机的耕作工具,获取自己的运动由拖拉机动力起飞( PTO)有被设计为混合土。降低土壤交通在很大程度上与此工具混合土。使用旋耕机是提高我国由于其许多优点。旋耕机结构具有一个齿轮箱,改变运动方向由拖拉机动力输出轴 90度,旋转速度传动齿轮和转子轴放置在水平的土壤混合。有刀片在进入转子轴件和混合土。特别是,在刀片和传动 齿轮,变形发生由于高无振动,高功率,土壤的部分影响,使用条件设计制造误差和错误。特别是用于建筑和传动部件的应力分布,为理解好的确定失败的原因。在这项研究中,传动的旋耕机而设计制造的一种本地制造商被建模为三维参数化设计软件和结构应力在根据其工作使用有限元软件模拟了在传动齿轮的分布条件。后仿真结果评价,对齿轮应力分布表明,齿轮工作无故障根据齿轮的材料应力屈服。此外,计算的参考齿轮工作安全系数仿真结果。 关键词: 旋耕机,应力分析,有限元法 1. 引言 旋耕机耕作机, 适 用于农田、果园 , 在农业。旋耕机有削 减巨大的能力, 混合土和苗床准备直接制备。此外,旋耕机有更多的混合能力是比犁的七倍。 旋耕机是连接到拖拉机三点联动系统,它是由拖拉机动力输出轴驱动( PTO)。运动的方向改变 90 度,从拖拉机动力输出第二齿轮箱的水平轴。转子轴与第二齿轮箱的运动。 旋耕机的元素在 其他作用力下 由于高无振动,高功率,土壤的部分影响,设计制造错误和错误的使用条件,耕作。因此,不需要的应力在它的元素分布。如果元素不能补偿的操纵力,这些元素变得毫无用处,因为打破或大变形破坏。特别是叶片及传动元件必须耐用 于操纵力下 。应力分布的预测是非常重要 的无故障产生的良好工作的设计和产品设计师和制造商。机的厂家,要为自己的机器,可能的错误,防止使用的材料,具有很高的安全系数,或者他们使用高质量的机械元件。虽然这些措施可以安全,产品的重量和成本的上升。 帮助开发的技术和设计软件,集成在新的代计算机,设计变得更加方便和可靠的。设计师可以设计在虚拟屏幕上自己的产品和他们可以利用计算机仿真技术,评价产品的工作条件。今天的三维( 3D)与有限元法的应用中越来越广泛的建模工业。许多三维建模和有限元的应用实例可以在不同的工程学科( 谷内 ,见1993)。 在这项研究中, 一种旋耕机传动齿轮火车,这是由本地制造商制造,采用Solid Works三维参数化建模设计软件。三维建模后的程序,进行了模拟研究 在利用 COSMOS Works 有限元软件传动齿轮火车。旋耕机和第二齿轮箱传动轮系及其三维模型在图 1中给出的。此外,图 2 显示了一个架构,是属于旋耕机传动系统(不同等人。, 2005)。如下图所示架构的运动和动力的传递与拖拉机动力输出万向节连接到第一齿轮箱有 2个螺旋锥齿轮的齿数的 10和 23,然后 到 第二齿轮箱轴。 2。材料和方法 2.1三维建模及应力分析 传动齿轮 根据齿轮传动齿轮 的原尺寸模型 , 然后他们聚集。通过图 3可以看到他们的 3D模型和它的值在表 1中给出的。开始的应力分析,我们认为,在正常工作条件下工作的齿轮。 在耕作,与旋耕机的操作,所需的拖拉机动力输出功率为 49.5千瓦拖拉机动力输出革命是 540分钟,根据拖拉机动力输出功率和传动比的齿轮,时刻 齿轮已经占用 。 表 1。传动齿轮的值 传动齿轮 的值 齿轮 I 齿轮 II 齿轮 III 模块 mm 齿数 - 面宽度 - 轴直径 mm 力矩 Nm 6 6 6 31 43 38 38 38 38 55 82 55 373.00 263.56 292.41 在模拟中,两种分析各齿轮副齿轮产生( I-II和齿轮 II-III)对工作条件。分析了已生成的三维,静态和线性 COSMOS Works有限元软件的假设。各向同性材料属性中使用的齿轮材料的模拟和性能的了表 2( 库塔 , 2003)。装配时,值得注意的是,在接触工作齿轮的齿,配对就在彼此接触条件下的单。因为,实验结果表明,对齿轮的表面发生的最大应力和失效对齿轮接触区和齿根单接触条件( 库股 , 1993)。 表 2。齿轮的材料特性 材料 DIN C45 弹性模量 GPa 拉伸强度 MPa 屈服 强度 h MPa 泊松比 - 密度 kg/m3 211 700 500 0.30 7850 2.2齿轮 1和齿轮 II之间 的 应力分析 齿轮和齿轮 II 我组装后,施加边界条件。齿轮 II固定于其轴轴承。占矩值法旋转轴方向的网格构造齿轮我在图 4中可以看到。 COSMOS Works啮合的功能已被用于地图网格。高阶(二级)的抛物型固体四面体单元具有四个角节点, 六中间节点,六边的高质量的网格划分功能( COSMOS工程建设, 2006) 。 在啮合操作,共 342160个元素和获得 489339 个节点的包含,总共 对 于 啮合的齿轮 1和齿轮 II 来说 。 在求解过程中,应力分布如图 5所示的了 , 对齿轮和齿轮 II。作为一个结果的最大等效应力( von米塞斯) , 确定对齿轮工作齿的接触面为我和 123.59 MPa,73.98 MPa时最大等效应力 由 齿轮工作齿 II 确定。 2.3 齿轮 II 和 齿轮 III 的应力分析 在这一部分中,同样的必要程序,应用应力分析齿轮 II和齿轮 III施加边界条 件,生成的网格划分和求解程序。齿轮 III被固定在轴承和占力矩值应用于齿轮 II。在啮合操作模型,总共有 326600 个元素 468512总节点啮合齿轮 II和 III总齿轮(图 6)。 结果图显示对齿轮 II和 III在图 7齿轮。分析结果表明,最大等效应力发生在接触表面加工齿轮 III为 47.13 M Pa。根据施加的力矩 46.37 M Pa的等效应力值对齿轮 II齿面接触区发生工作。 得到的仿真结果表明,我们是如何工作的分布应力传动齿轮齿。根据仿真结果和齿轮材料的屈服应力,工作安全系数占传动齿轮(表 3)。 表 3。传 动齿轮的工作安全系数 传动齿轮 屈服应力产量范围 M Pa 冯米塞斯 von M Pa 安全系数。 K coeff. = yield / von 齿轮 I 500 123.59 4.05 齿轮 II 500 73.98 6.76 齿轮 III 500 47.13 10.60 3。结论 在这项研究中,对一种旋耕机,由本地制造商制造的传动齿轮的应力分布进行了模拟。为了这个目的,传动齿轮进行了建模和结构应力分析的产生 利用 Solid Works 三维参数化软件 COSMOS Works有限 元软件。 根据仿真结果,以下的信息可以说; 1.当传动齿轮进行了仿真结果屈服应力的材料的齿轮,齿轮无故障检测。齿轮工作在正常条件下。 2.在应力分析齿轮 I和齿轮 II之间,最大等效应力在确定齿轮齿的接触面为工作 123.59 M Pa。在相同的齿轮工作齿结果 II 73.98兆帕的应力值对接触表面。 3。在应力分析齿轮 II和 III之间的齿轮,最大等效应力确定对齿轮 工作齿接触面为 47.13 M Pa。确定了 46.37 M Pa的接触面齿轮 II工作牙最大应力值。 4。根据模拟结果对齿轮的最大应力,工作安全系数占齿轮 齿轮齿轮 II和III,如表 3。 使用具有安全系数高的材料要容易应用设计者。但这种方式去过多的成本上升,重量和时间。避免这些结果,仿真技术和计算机软件的使用准备好的设计师,是如此有用的工具和应用程序,以获得时间和制造成本。此外,它是可能增加的素质和能力最佳的机械和工具在农业机械化系统的设计。 参考文献 耶尔马兹,博士, 卡纳克基先生 , 2005。一种旋耕机齿轮失效。工程失效分析,12( 3): 400 404。 2006软件 COSMOS Works帮助文件, 2006。 COSMOS Works用户指南。 库股 , 1993。机械元件。科贾埃利 大学 出版社,第二卷,科贾埃利(土耳其)。 库塔 , M.G., 2003。指导制造商。 比尔深 出版社,伊斯坦布尔(土耳其)。 谷内 , D., 1993。有限元原理方法工程师。(翻译),萨卡里亚大学出版社, No.03,萨卡里亚(土耳其)。 奥美资 , A., 2001。园林植物的机械化。阿克登尼基大学出版社: No.76,安塔利亚, (土耳其)。 STRESS ANALYSIS ON TRANSMISSION GEARS OF A ROTARY TILLER USING FINITE ELEMENT METHOD Mehmet TOPAKCI a H.Kursat CELIK Deniz YILMAZ Ibrahim AKINCI Akdeniz University, Faculty of Agriculture, Department of Agricultural Machinery, Antalya, Turkey Accepted 12 August 2008 Abstract: Rotary tiller is one of the tillage tools which gets own motion from tractor power take off (PTO) and it had been designed for blend to soil. Soil traffic is decreased to great extent with this tool by blending the soil. Using of rotary tiller is increasing nowadays in our country because of its many benefits. Rotary tiller construction has a gear box that changes motion direction with 90 degrees from tractor PTO, transmission gears for rotation velocity and a rotor shaft which placed as horizontal to soil for blending. There are cutter blades on rotor shaft for breaking into pieces and blend to soil. Especially, on cutter blade and transmission gears, deformations occur because of high vibration, pointless high power, impact effect of soil parts, design-manufacturing error and wrong using conditions. Especially for construction and transmission parts, stress distributions should be determined well for understand failure reasons. In this study, transmission gear train of a rotary tiller which was designed and manufactured by a local manufacturer was modeled as three-dimensional in a parametric design software and structural stress distributions on transmission gears were simulated using a finite element method software according to its operating condition. After evaluating of simulation results, stress distributions on gears show that gears working without failure according to yield stress of gears materials. Additionally, working safety coefficient of gears calculated by reference simulation results. Keywords: Rotary Tiller, Stress Analysis, Finite Elements Method 1. Introduction Rotary tiller is a tillage machine which is used in arable field and fruit gardening agriculture. Rotary tiller has a huge capacity for cutting, mixing to topsoil and preparing the seedbed preparation directly. Additionally, a rotary tiller has more mixing capacity seven times than a plough ( Ozmerzi , 2002). The rotary tiller is attached to three point linkage system of a tractor and it is driven by the tractor PTO (Power Take Off). The motion direction is changed as 90 degrees from tractor PTO to second gear box by horizontal shaft. The rotor shaft gets its motion from second gear box. Rotary tillers elements work under miscellaneous forces because of high vibration, pointless high power, impact effect of soil parts, design-manufacturing errors and wrong using conditions in tillage operation. Therefore, undesired stress distributions occur on its elements. If the elements cannot compensate to the operating forces, these elements become useless because of breaking or high deformation failure. Especially blades and transmission elements have to be durable against to operating forces. Predicting to stress distributions is so important for the designers and manufacturers to generate good working designs and products without failure. Machine manufacturers, which want to prevent for probable errors of their own machines, use materials, which have high safety coefficient, or they use high weight machine elements. Although these prevention methods can be safety, weight and cost of products rise. Helping with developed technologies and design software which integrated in new generation computers, designs are getting easier and reliable. Designers can design own products in virtual screen and they can evaluate working condition of the products by simulating techniques using the computers. Today three-dimensional (3D) modeling and finite elements method applications are getting so widespread in the industry. Many of 3D modeling and finite elements application samples can be seen on different engineering disciplines (Gunay, 1993). In this study, transmission gear train of a rotary tiller, which was designed and manufactured by a local manufacturer, was modeled using Solid works 3D parametric design software. After 3D modeling procedure, a simulation study was carried out on the transmission gear train using Cosmos works finite elements software. Rotary tiller and its second gear box transmission gear train and its 3D model were given in Figure 1. Additionally, Figure 2 shows a schema that is belong to transmission system of rotary tiller (Akinci et al., 2005). As shown in the schema that motion and power transmit with universal joint from tractor PTO output to first gear box that has 2 helical bevel gears which have 10 and 23 number of teeth and then goes to second gear box to rotor shaft. 2. Materials and Methods 2.1 3D Modeling and Stress Analysis of Transmission Gears Transmission gears were modeled according to original dimensions of gears then they were assembled. It can be seen in Figure 3 their 3D model and its values were given in Table 1. Getting started stress analysis, we assumed that gears are working in normal working condition. In the tillage operation with rotary tiller, required tractor PTO power was taken as 49.5 kW and tractor PTO revolution was 540 min According to tractor PTO power and transmission ratios, moments of gears have been accounted. Table 1. Values of Transmission Gears Values of Transmission Gears GEAR I GEARII GEARIII Module mm Number of teeth - Face width - Axel diameter mm Moments Nm 6 6 6 31 43 38 38 38 38 55 82 55 373.00 263.56 292.41 In simulation, two analyses generated for each two gear pairs (Gear I-II and Gear II-III) on working condition. Analyses have been generated in3D, static and linear assumptions in Cosmos works finite elements software. Isotropic material properties were used in simulation and properties of gears material was given at Table 2 (Kutay, 2003). While assembling, it was noted that working gears tooth in contact, paired just at single contact condition with each others. Because, experiments show that maximum stresses and failures on gears occur on gears surface contact zone and tooth root on single contact condition (Curgul, 1993). Table 2. Material Properties of Gears kMaterial DIN C45 Elastic modulus G Pa Tensile strength M Pa Yield strength M Pa Poissons ratio - Density kg/m3 211 700 500 0.30 7850 2.2 Stress Analysis Between on Gear I and Gear II After assembling of Gear I and Gear II, boundary condition was applied. Gear II fixed from bearing of its shaft. Accounted moment value was applied at direction of rotation axis to Gear I and its mesh construction can be seen in Figure 4. Cosmos works meshing functions have been used to map the meshing. Higher-order (Second-order) parabolic solid tetrahedral element which has four corner nodes, six mid-side nodes, and six edges attached by meshing function for high quality mesh construction (Cosmos Works, 2006). After meshing operation, 342160 total elements and 489339 total nodes obtained for meshed Gear I and Gear II in total. After solve process, stress distributions has been shown in Figure 5 for pairs of Gear I and Gear II. As a result maximum equivalent stress (Von Mises) determined on the contact surface of working teeth of Gear I as 123.59 M Pa and 73.98 M Pa maximum equivalent stresses determined on working teeth of Gear II. 2.3 Stress Analysis Between on Gear II and Gear III In this section, same necessary procedures are applied for stress analysis of Gear II and Gear III. Boundary conditions are applied, generated meshing and solve procedure. Gear III has been fixed on bearing and accounted moment value is applied to Gear II. After meshing operation models have 326600 total elements and 468512 total nodes for meshed Gear II and Gear III in total (Figure 6). Result plots were showed for pairs of Gear II and Gear III in Figure 7. Analysis results show that maximum equivalent stress occurred on contact surface working teeth of Gear III as 47.13 M Pa. According to applied moment 46.37 M Pa equivalent stress value occurred on contact zone of working teeth of Gear II. Obtained simulation results show us to how is distributing stresses on working teeth of transmission gears. According to simulation results and yield stress of gears material, working safety coefficient accounted for transmission gears (Table 3). Table 3. Working Safety Coefficient for Transmission Gears TRANSMISSION GEARS YIELD STRESS yield MPa VON MISES von MPa SAFETY COEFF. K coeff. = yield / von GEAR I 500 123.59 4.05 GEAR II 500 73.98 6.76 GEAR III 500 47.13 10.60 3. Conclusions In this study, stress distributions were simulated on transmission gears of a rotary tiller which designed and manufactured by local manufacturer. For this aim, transmission gears were modeled and structural stress analysis was generated using Solid works 3D parametric software and Cosmos works finite elements software. According to simulation results, following notes can be said; 1. When transmission gears were evaluated in the simulation results according to yield stress of gears material, no failure was detected on gears. Gears are working on normal condition. 2. In stress analysis between Gear I and Gear II, maximum equivalent stress was determined on contact surface of working teeth of Gear I as 123.59 M Pa. In same results plot of Gear II working teeth has 73.98 M Pa stress value on contact surface. 3. In stress analysis between Gear II and Gear III, maximum equivalent stre

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论