已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.1.2垂直于弦的直径,问题:你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m.,问题情境,你能求出赵州桥主桥拱的半径吗?,把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?,可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴,一、实践探究,如图,AB是O的一条弦,作直径CD,使CDAB于E点(1)这个图形是轴对称图形吗?如果是,它的对称轴是什么?,O,A,B,C,D,E,二、,(2)你能发现图中有那些相等的线段和弧?为什么?,把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A与点B重合,AE与BE重合,AC与BC重合,AD与BD重合,因此AE=BE,即直径CD平分弦,并且平分AB及ACB,AC=BC,AD=BD,O,B,C,D,A,E,O,A,B,C,D,E,垂径定理:垂直于弦的直径,平分弦且平分弦所对的两条弧,归纳,条件,结论,换言之:垂径定理:若一条直线满足:条件(1)过圆心(2)垂直于弦,则它(3)平分弦(4)平分弦所对的优弧,(5)平分弦所对的劣弧,也可以说:直径垂直于弦,垂径定理三种语言,1.定理垂直于弦的直径,平分弦且平分弦所的两条弧,老师提示:垂径定理是圆中一个重要的结论,三种语言要相互转化,形成整体,才能运用自如.,CDAB,如图CD是直径,AM=BM,如图,AB是O的一条弦,作直径CD,使AE=BE(1)CDAB吗?为什么?(2),O,A,B,C,D,E,AC与BC相等吗?AD与BD相等吗?为什么?,三、,几何语言表达,推论:,判断下列说法的正误,平分弧的直径必平分弧所对的弦,平分弦的直线必垂直弦,垂直于弦的直径平分这条弦,平分弦的直径垂直于这条弦,弦的垂直平分线是圆的直径,平分弦所对的一条弧的直径必垂直这条弦,在圆中,如果一条直线经过圆心且平分弦,必平分此弦所对的弧,辨别是非,小试牛刀:如图,已知在O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求O的半径。,解:连结OA,作OEAB于点E,则OE3厘米,AEBE.AB8厘米AE4厘米在RtAOE中,据勾股定理有OA5厘米O的半径为5厘米。注意:圆心到弦的距离叫弦心距,解决求赵州桥拱半径的问题,如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R过圆心O作弦AB的垂线OC,垂足为D,OC与AB相交于点D,根据前面的结论,D是AB的中点,C是AB的中点,CD就是拱高AB=48米,CD=16米,实践应用:,O,A,B,C,D,E,若直径平分弦(弦不是直径),则这条直径垂直于弦,且平分弦所对的两条弧.,归纳:,或者说:若直径平分一条不是直径的弦,则这条直径垂直于弦,并且平分弦所对的两条弧.,几何语言表述:,AC=BC,定理及推论,总结:一条直线只需满足:条件(1)过圆心(2)垂直于弦,(3)平分弦(4)平分弦所对的优弧,(5)平分弦所对的劣弧中的任意两个条件,就能推出其它三个.简称“知二推三”.,如图,AB是O的一条弦,CD是直径,且AE=BEOE=5,AB=24,求O的半径,O,A,B,C,D,E,练一练:,驶向胜利的彼岸,挑战自我填一填,1、判断:垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.()(2)经过弦的中点的直径一定垂直于弦.().(3)弦的垂直平分线一定平分这条弦所对的弧.(),驶向胜利的彼岸,挑战自我画一画,2.已知:如图,O中,弦ABCD,ABCD,直径MNAB,垂足为E,交弦CD于点F.图中相等的线段有:.图中相等的劣弧有:.,1.如图,在O中,AB、AC为互相垂直且相等的两条弦,ODAB于D,OEAC于E,求证四边形ADOE是正方形,证明:,四边形ADOE为矩形,,又AC=AB,AE=AD,四边形ADOE为正方形.,提高练习,2.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。你认为AC和BD有什么关系?为什么?,证明:过O作OEAB,垂足为E,则AEBE,CEDE。AECEBEDE即ACBD,注意:解决有关弦的问题,常过圆心作弦的弦心距,或作垂直于弦的直径,它是一种常用辅助线的添法,3:如图,圆O的弦AB8,DC2,直径CEAB于D,求半径OC的长。,垂径,直径MNAB,垂足为E,交弦CD于点F.,练习5:如图,CD为圆O的直径,弦AB交CD于E,CEB=30,DE=9,CE=3,求弦AB的长。,总结:,解决有关弦的问题,经常是过圆心作弦的弦心距,或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件。,船能过拱桥吗,2.如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶高出水面2.4米.现有一艘宽3米、船舱顶部为长方形并高出水面2米的货船要经过这里,此货船能顺利通过这座拱桥吗?,相信自己能独立完成解答.,船能过拱桥吗,解:如图,用表示桥拱,所在圆的圆心为O,半径为Rm,经过圆心O作弦AB的垂线OD,D为垂足,与相交于点C.根据垂径定理,D是AB的中点,C是的中点,CD就是拱高.由题设得,在RtOAD中,由勾股定理,得,解得R3.9(m).,在RtONH中,由勾股定理,得,此货船能顺利通过这座拱桥.,垂径定理的应用,在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB=600mm,求油的最大深度.,垂径定理的逆应用,在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB=600mm,求油的最大深度.,D,C,课后小结,1、要把实际问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 招标文件中的运输说明
- 增长的算法-空手
- 2024年九年级化学上册 第二单元 课题1 空气教案 (新版)新人教版
- 2024-2025学年高中数学 第一章 预备知识 4 一元二次函数与一元二次不等式 1.4.3 一元二次不等式的应用教案 北师大版必修第一册
- 2023六年级英语下册 Unit 8 What′s Your Dream第4课时教案 陕旅版(三起)
- 2024-2025学年新教材高中历史 第一单元 古代文明的产生与发展 第1课 文明的产生与早期发展教学教案 新人教版必修《中外历史纲要(下)》
- 八年级物理上册 4.2《探究汽化和液化的特点》教学设计 (新版)粤教沪版
- 2024-2025学年高中历史下学期第1周 新中国初期的外交教学设计
- 易制爆化学品库管员职责
- 钻井纠斜技术服务合同(2篇)
- 新食品安全法全文
- 移动电源生产流程图
- 天津市基本医疗保险意外伤害首诊报告卡
- 北京市第十届迎春杯小学数学竞赛决赛试卷
- 大象版五年级科学上册第五单元《小小机械师》全部课件(共5课时)
- 《民航地面服务与管理》课程标准
- 陶瓷釉料配方600例
- Unit+5+Into+the+Unknown+Understanding+ideas+教学设计 高二下学期英语外研版(2019)选择性必修第四册
- 装订档案封皮打印模板
- 血管外科手术介入治疗基础知识课件
- 构建小区和谐重要性
评论
0/150
提交评论