




已阅读5页,还剩49页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
物理学论文-TheEquivalencePrinciple,theCovariancePrincipleandtheQuestionofSelf-ConsistencyinGeneralRelativityTheEquivalencePrinciple,theCovariancePrincipleandtheQuestionofSelf-ConsistencyinGeneralRelativityC.Y.LoAppliedandPureResearchInstitute17NewcastleDrive,Nashua,NH03060,USASeptember2001AbstractTheequivalenceprinciple,whichstatesthelocalequivalencebetweenaccelerationandgravity,requiresthatafreefallingobservermustresultinaco-movinglocalMinkowskispace.Ontheotherhand,covarianceprincipleassumesanyGaussiansystemtobevalidasaspace-timecoordinatesystem.Giventhemathematicalexistenceoftheco-movinglocalMinkowskispacealongatime-likegeodesicinaLorentzmanifold,acrucialquestionforasatisfactionoftheequivalenceprincipleiswhetherthegeodesicrepresentsaphysicalfreefall.Forinstance,ageodesicofanon-constantmetricisunphysicaliftheaccelerationonarestingobserverdoesnotexist.ThisanalysisismodeledafterEinsteinillustrationoftheequivalenceprinciplewiththecalculationoflightbending.Tojustifyhiscalculationrigorously,itisnecessarytoderivetheMaxwell-NewtonApproximationwithphysicalprinciplesthatleadtogeneralrelativity.Itisshown,asexpected,thattheGalileantransformationisincompatiblewiththeequivalenceprinciple.Thus,generalmathematicalcovariancemustberestrictedbyphysicalrequirements.Moreover,itisshownthroughanexamplethataLorentzmanifoldmaynotnecessarilybediffeomorphictoaphysicalspace-time.Alsoobservationsupportsthataspacetimecoordinatesystemhasmeaninginphysics.Ontheotherhand,Pauliversionleadstotheincorrectspeculationthatingeneralrelativityspace-timecoordinateshavenophysicalmeaning1.Introduction.Currently,amajorproblemingeneralrelativityisthatanyRiemanniangeometrywiththepropermetricsignaturewouldbeacceptedasavalidsolutionofEinsteinequationof1915,andmanyunphysicalsolutionswereaccepted1.Thisis,inpart,duetothefactthatthenatureofthesourcetermhasbeenobscuresincethebeginning2,3.Moreover,themathematicalexistenceofasolutionisoftennotaccompaniedwithunderstandingintermsofphysics1,4,5.Consequently,theadequacyofasourceterm,foragivenphysicalsituation,isoftennotclear6-9.Pauli10consideredthathetheoryofrelativitytobeanexampleshowinghowafundamentalscientificdiscovery,sometimesevenagainsttheresistanceofitscreator,givesbirthtofurtherfruitfuldevelopments,followingitsownautonomouscourse.Thus,inspiteofobservationalconfirmationsofEinsteinpredictions,oneshouldexaminewhethertheoreticalself-consistencyissatisfied.Tothisend,onemayfirstexaminetheconsistencyamongphysicalrincipleswhichleadtogeneralrelativity.Thefoundationofgeneralrelativityconsistsofa)thecovarianceprinciple,b)theequivalenceprinciple,andc)thefieldequationwhosesourcetermissubjectedtomodification3,7,8.Einsteinequivalenceprincipleisthemostcrucialforgeneralrelativity10-13.Inthispaper,theconsistencybetweentheequivalenceprincipleandthecovarianceprinciplewillbeexaminedtheoretically,inparticularthroughexamples.Moreover,theconsistencybetweentheequivalenceprincipleandEinsteinfieldequationof1915isalsodiscussed.Theprincipleofcovariance2statesthathegenerallawsofnaturearetobeexpressedbyequationswhichholdgoodforallsystemsofcoordinates,thatis,arecovariantwithrespecttoanysubstitutionswhatever(generallycovariant).Thecovarianceprinciplecanbeconsideredasconsistingoftwofeatures:1)themathematicalformulationintermsofRiemanniangeometryand2)thegeneralvalidityofanyGaussiancoordinatesystemasaspace-timecoordinatesysteminphysics.Feature1)waseloquentlyestablishedbyEinstein,butfeature2)remainsanunverifiedconjecture.IndisagreementwithEinstein2,Eddington11pointedoutthatpaceisnotalotofpointsclosetogether;itisalotofdistancesinterlocked.EinsteinacceptedEddingtoncriticismandnolongeradvocatedtheinvalidargumentsinhisbook,heMeaningofRelativityof1921.EinsteinalsopraisedEddingtonbookof1923tobethefinestpresentationofthesubjecteverwrittenMoreover,incontrasttothebeliefofsometheorists14,15,ithasneverbeenestablishedthattheequivalenceofallframesofreferencerequirestheequivalenceofallcoordinatesystems9.Ontheotherhand,ithasbeenpointedoutthat,becauseoftheequivalenceprinciple,themathematicalcovariancemustberestricted8,9,16.Moreover,Kretschmann17pointedoutthatthepostulateofgeneralcovariancedoesnotmakeanyassertionsaboutthephysicalcontentofthephysicallaws,butonlyabouttheirmathematicalformulation,andEinsteinentirelyconcurredwithhisview.Pauli10pointedoutfurther,hegenerallycovariantformulationofthephysicallawsacquiresaphysicalcontentonlythroughtheprincipleofequivalence.Nevertheless,Einstein2arguedthat.thereisnoimmediatereasonforpreferringcertainsystemsofcoordinatestoothers,thatistosay,wearriveattherequirementofgeneralco-variance.Thus,Einsteincovarianceprincipleisonlyaninterimconjecture.Apparently,hecouldmeanonlytoamathematicalcoordinatesystemforcalculationsincehisequivalenceprinciple,amongothers,isanimmediatereasonforpreferringcertainsystemsofcoordinatesinphysics(壯5&6).Notethatamathematicalgeneralcovariancerequires,asHawkingdeclared18,theindistinguishabilitybetweenthetime-coordinateandaspace-coordinate.Ontheotherhand,theequivalenceprincipleisrelatedtotheMinkowskispace,whichrequiresadistinctionbetweenthetime-coordinateandaspace-coordinate.Hence,themathematicalgeneralcovarianceisinherentlyinconsistentwiththeequivalenceprinciple.Althoughtheequivalenceprincipledoesnotdeterminethespace-timecoordinates,itdoesrejectphysicallyunrealizablecoordinatesystems9.WhereasinspecialrelativitytheMinkowskimetriclimitsthecoordinatetransformations,amonginertialframesofreference,totheLorentz-Poincartransformations;ingeneralrelativitytheequivalenceprinciplelimitsthephysicalcoordinatetransformationstobeamongvalidspace-timecoordinatesystems,whichareinprinciplephysicallyrealizable.Thus,theroleoftheMinkowskimetricisextendedbytheequivalenceprincipleeventowheregravityispresent.Mathematically,however,theequivalenceprinciplecanbeincompatiblewithasolutionofEinsteinequation,evenifitisaLorentzmanifold(whosespace-timemetrichasthesamesignatureasthatoftheMinkowskispace).IthasbeenproventhatcoordinaterelativisticcausalitycanbeviolatedforsomeLorentzmanifolds9,16.Unfortunately,duetoinadequatephysicalunderstanding,somerelativists19-23believethatapropermetricsignaturewouldimplyasatisfactionoftheequivalenceprinciple.Themisconceptionthat,inaLorentzmanifold,areefallwouldautomaticallyresultinalocalMinkowskispace20,23,hasdeep-rootedphysicalmisunderstandingsfrombelievinginthegeneralmathematicalcovarianceinphysics.Althoughtheequivalenceprincipleforaphysicalspace-time1)isclearlystated,theconditionsforitssatisfactioninaLorentzmanifoldhavebeenmisleadinglyoversimplified.Thus,itisnecessarytoclarifyfirst,intermsofphysics,themeaningoftheequivalenceprincipleanditssatisfaction(2&3).Thecrucialconditionforasatisfactionoftheequivalenceprincipleisthatthegeodesicrepresentsaphysicalfreefall.ThemathematicalexistenceoflocalMinkowskispacesmeansonlymathematicalcompatibilityofthetheoryofgeneralrelativitytoRiemanniangeometry.Then,itbecomespossibletodemonstratemeaningfullythroughdetailedexamplesthatdiffeomorphiccoordinatesystemsmaynotbeequivalentinphysics(5&6).Moreover,toavoidprejudiceduetotheoreticalpreferences,thesedemonstrationsarebasedontheoreticalinconsistency.Tothisend,Einsteinillustrationoftheequivalenceprincipleinhiscalculationofthelightbendingisusedasamodelforthisanalysis.However,inhiscalculation,therearerelatedtheoreticalproblemsthatmustbeaddressed.First,thenotionofgaugeusedinhiscalculationisactuallynotgenerallyvalid9aswillbeshowninthispaper.Also,itisknownthatvalidityofthe1915Einsteinequationisquestionable7,8,24-26.Foracompletetheoreticalanalysis,theseissuesshould,ofcourse,beaddressedthoroughly.Nevertheless,forthevalidityofEinsteincalculationonthelightbending2,itissufficienttojustifythelinearfieldequationasavalidapproximation.Forthispurpose,theMaxwell-NewtonApproximation(i.e.,thelinearfieldequation)isderiveddirectlyfromthephysicalprinciplesthatleadtogeneralrelativity(4).Moreover,thereareintrinsicallyunphysicalLorentzmanifoldsnoneofwhichisdiffeomorphic21toaphysicalspace-time(7).Thus,toacceptaLorentzmanifoldasvalidinphysics,itisnecessarytoverifytheequivalenceprinciplewithaspace-timecoordinatesystemforphysicalinterpretations.Then,forthepurposeofcalculationonly,anydiffeomorphismcanbeusedtoobtainnewcoordinates.Itisonlyinthissensethatacoordinatesystemforaphysicalspace-timecanbearbitrary.Inthispaper,therequirementofageneralcovarianceamongallconceivablemathematicalcoordinatesystems2willbefurtherconfirmedtobeanover-extendeddemand9.(NotethatEddington11didnotacceptthegaugerelatedtogeneralmathematicalcovariance.)Analysisshowsthatasatisfactionoftheequivalenceprinciplerestrictedcovariance(壯3-5).Afterthisnecessaryrectification,somecurrentlyacceptedwell-knownLorentzmanifoldswouldbeexposedasunphysical(7).But,generalrelativityasaphysicaltheoryisunaffected9.Itishopedthatthisclarificationwouldhelpurtherfruitfuldevelopments,followingitsownautonomouscourse10.2.EinsteinEquivalencePrinciple,FreeFall,andPhysicalSpace-TimeCoordinatesInitiallybasedontheobservationthatthe(passive)gravitationalmassandinertialmassareequivalent,Einsteinproposedtheequivalenceofuniformaccelerationandgravity.In1916,thisproposalisextendedtothelocalequivalenceofaccelerationandgravity2becausegravityisingeneralnotuniform.Thus,ifgravityisrepresentedbythespace-timemetric,thegeodesicisthemotionofaparticleundertheinfluenceofgravity.Then,foranobserverinafreefall,thelocalmetricislocallyconstant.Tobeconsistentwithspecialrelativity,suchalocalmetricisrequiredtobelocallyaMinkowskispace2.Thus,acentralproblemingeneralrelativityiswhetherthegeodesicrepresentsaphysicalfreefall.However,validityofthisglobalpropertyisrealizedlocallythroughasatisfactionoftheequivalenceprinciple.Moreover,Eddington11observedthatspecialrelativityshouldapplyonlytophenomenaunrelatedtothesecondorderderivativesofthemetric.Thus,Eins
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年苏州市初中地理中考地理及答案
- 室颤教学查房课件
- 场地使用权与客户满意认证合同
- 车间承包与环保设施建设协议
- 施工现场安全责任连带保证合同
- 电子产品典当销售合同
- 车辆借用保险责任免除与损害赔偿合同
- 字画典当贷款协议书
- 彩钢瓦屋面施工及屋顶绿化一体化合同样本
- 韵母课件教学课件
- 园林工程分部(子分部)工程、分项工程划分
- 【MOOC】人像摄影-中国传媒大学 中国大学慕课MOOC答案
- 派出所应对校园突发事件应急预案
- 燃气管道防火防爆安全方案
- 网络安全漏洞挖掘与报告
- 埋地消防管渗漏整改工程施工方案
- 装饰装修施工人员安全知识培训考试试卷及答案
- 2023年上海市普通高中学业水平合格性考试地理试题及答案
- 宿舍消防安全培训课件
- 2024版小学一年级下册综合实践活动模拟试卷
- 江苏2024年江苏省美术馆招聘笔试历年典型考题及考点附答案解析
评论
0/150
提交评论