




已阅读5页,还剩125页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,电力系统稳态分析,第四章 复杂电力系统潮流的计算机算法,2,第四章 复杂电力系统潮流的计算机算法,基本要求:本章着重介绍运用电子计算机计算电力系统潮流分布的方法。它是复杂电力系统稳态和暂态运行的基础。 运用计算机计算的步骤,一般包括建立数学模型,确定解算方法,制定框图和编制程序,本章着重前两步。,3,本章知识点:,1、节点导纳矩阵,节点导纳矩阵各元素的物理意义,如何由节点导纳矩阵形成节点阻抗矩阵,节点阻抗矩阵各元素的物理意义,导纳矩阵与阻抗矩阵的对称性和稀疏性;,2、网络节点分类,数学模型中已知条件和待求量;,3、牛顿拉夫逊迭代法原理,牛顿拉夫逊迭代法直角坐标形式的功率误差方程和电压误差方程,牛顿拉夫逊迭代法极坐标形式的雅可比矩阵与修正方程,两种修正方程的不同点,牛顿拉夫逊迭代法两种坐标系潮流计算求解步骤;,4,5、PQ分解法潮流计算, PQ分解法与牛顿拉夫逊的关系,由牛顿拉夫逊法导出PQ分解法用到了几个近似条件,各近似条件的物理意义, PQ分解法的修正方程式, PQ分解法与牛顿拉夫逊的迭代次数与解题速度, PQ分解法分解法潮流计算求解步骤。,4、高斯赛德尔法潮流原理,非线性节点电压方程的高斯赛德尔迭代形式,PV节点向PQ节点转化的原因和方法;,5,41 电力网络方程,电力网络方程指将网络的有关参数和变量及其相互关系归纳起来组成的,反映网络特性的数学方程式组。如节点电压方程、回路电流方程,割集电压方程。相应有: (1)节点导纳矩阵 (2)节点阻抗矩阵 (3)回路阻抗矩阵,6,网络元件:恒定参数 发电机:电压源或电流源 负荷:恒定阻抗,代数方程,一、节点电压方程,7,一、节点电压方程,注意: 零电位是不编号的,负荷用阻抗表示,以母线电压作为待求量,8,电压源变为电流源,以零电位作为参考,根据基尔霍夫电流定律,一、节点电压方程,1、节点导纳方程,9,一、节点电压方程,1、节点导纳方程,10,其中,一、节点电压方程,1、节点导纳方程,11,1、节点导纳方程,n 个独立节点的网络,n 个节点方程,一、节点电压方程,12,n 个独立节点的网络,n 个节点方程,一、节点电压方程,1、节点导纳方程,13,n 个独立节点的网络,n 个节点方程,Y 节点导纳矩阵 Yii 节点i的自导纳 Yij 节点i、j间的互导纳,一、节点电压方程,1、节点导纳方程,14,Y 矩阵元素的物理意义,一、节点电压方程,1、节点导纳方程,15,Y 矩阵元素的物理意义 自导纳,Ykk:当网络中除节点k以外所有节点都接地时,从节点k注入网络的电流同施加于节点k的电压之比 Ykk:节点k以外的所有节点都接地时节点k对地的总导纳,一、节点电压方程,1、节点导纳方程,16,Y 矩阵元素的物理意义 互导纳,Yki:当网络中除节点k以外所有节点都接地时,从节点i注入网络的电流同施加于节点k的电压之比 节点i的电流实际上是自网络流出并进入地中的电流,所以Yki应等于节点k、i之间导纳的负值,一、节点电压方程,1、节点导纳方程,17,一、节点电压方程,1、节点导纳矩阵Y,节点导纳矩阵中自导纳和互导纳的确定,18,一、节点电压方程,1、节点导纳矩阵Y,节点导纳矩阵中自导纳和互导纳的确定,19,一、节点电压方程,1、节点导纳矩阵Y,节点导纳矩阵中自导纳和互导纳的确定,20,一、节点电压方程,1、节点导纳矩阵Y,节点导纳矩阵中自导纳和互导纳的确定,21,一、节点电压方程,1、节点导纳矩阵Y,节点导纳矩阵中自导纳和互导纳的确定,22,节点导纳矩阵Y 的特点,直观易得 稀疏矩阵 对称矩阵,一、节点电压方程,23,Z 矩阵元素的物理意义,一、节点电压方程,2、节点阻抗矩阵,24,Z = Y -1 节点阻抗矩阵 Zii 节点i的自阻抗或输入阻抗 Yij 节点i、j间的互阻抗或转移阻抗,Z 矩阵元素的物理意义,一、节点电压方程,2、节点阻抗矩阵,25,Z 矩阵元素的物理意义,一、节点电压方程,2、节点阻抗矩阵,26,在节点 k 单独注入电流,所有其它节点的注入电流都等于 0 时,在节点 k 产生的电压同注入电流之比 从节点 k 向整个网络看进去的对地总阻抗,Z 矩阵元素的物理意义,一、节点电压方程,2、节点阻抗矩阵,27,在节点 k 单独注入电流,所有其它节点的注入电流都等于 0 时,在节点 i 产生的电压同注入电流之比,Z 矩阵元素的物理意义互阻抗,一、节点电压方程,2、节点阻抗矩阵,28,一、节点电压方程,2、节点阻抗矩阵,节点阻抗矩阵中自阻抗和互阻抗的确定,29,一、节点电压方程,2、节点阻抗矩阵,节点阻抗矩阵中自阻抗和互阻抗的确定,30,一、节点电压方程,2、节点阻抗矩阵,节点阻抗矩阵中自阻抗和互阻抗的确定,31,一、节点电压方程,2、节点阻抗矩阵,节点阻抗矩阵中自阻抗和互阻抗的确定,32,一、节点电压方程,2、节点阻抗矩阵,节点阻抗矩阵中自阻抗和互阻抗的确定,33,Z 矩阵的特点,复杂难求(Y1,支路追加法) 满矩阵,一、节点电压方程,2、节点阻抗矩阵,34,二、回路电流方程,回路阻抗矩阵,35,二、回路电流方程,回路阻抗矩阵,36,m 个独立回路的网络,m个节点方程,二、回路电流方程,回路阻抗矩阵,37,m 个独立回路的网络,m 个节点方程,二、回路电流方程,回路阻抗矩阵,38,m 个独立回路的网络,m 个节点方程,ZL 回路阻抗矩阵 IL 回路电流列相量;(习惯取顺时针的电流流向为正) EL 回路电压源电势的列相量,与IL方向一致为正。,二、回路电流方程,回路阻抗矩阵,39,ZL 矩阵元素的物理意义,Zii:自阻抗,环绕回路i所有支路阻抗的总和; Zij:互阻抗,回路i和回路j共有的阻抗,其中ZijZji,如回路j、i无共有阻抗,则ZijZji0,二、回路电流方程,回路阻抗矩阵,40,二、回路电流方程,回路阻抗矩阵,ZL 矩阵的特点,对称矩阵 稀疏矩阵,41,三、节点导纳矩阵,Y 矩阵的修改,不同的运行状态,(如不同结线方式下的运行状况、变压器的投切或变比的调整等),改变一个支路的参数或它的投切只影响该支路两端节点的自导纳和它们之间的互导纳,因此仅需对原有的矩阵作某些修改。,42,三、节点导纳矩阵,Y 矩阵的修改,不同的运行状态,(如不同结线方式下的运行状况、变压器的投切或变比的调整等),43,三、节点导纳矩阵,Y 矩阵的修改,44,电力网,Y 增加一行一列(n1)(n1),(1)从原网络引出一条支路增加一个节点,三、节点导纳矩阵,Y 矩阵的修改,45,Y 阶次不变,三、节点导纳矩阵,Y 矩阵的修改,(2)在原有网络节点i、j之间增加一条支路,46,Y 阶次不变,(3)在原有网络的节点i、j之间切除一条支路,三、节点导纳矩阵,Y 矩阵的修改,47,三、节点导纳矩阵,Y 矩阵的修改,(4)在原有网络的节点i、j之间的导纳由yij改变为yij,48,三、节点导纳矩阵,Y 矩阵的修改,(5)在原有网络的节点i、j之间变压器的变比由k*改变为k*,49,三、节点导纳矩阵,Y 矩阵的修改,(5)在原有网络的节点i、j之间变压器的变比由k*改变为k*,50,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,1、功率方程,等值电源功率,等值负荷功率,(a)简单系统,51,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,1、功率方程,(b)简单系统的等值网络,52,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,1、功率方程,(c)注入功率和注入电流,53,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,1、功率方程,(c)注入功率和注入电流,54,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,1、功率方程,55,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,1、功率方程,56,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,1、功率方程,57,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,1、功率方程,决定功率大小的是相对相位角或相对功率角,有功、无功功率损耗为:,58,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,2、变量的分类,除网络参数外,共有十二个变量,(1)负荷消耗的有功、无功功率PL1、PL2、QL1、QL2。取决于用户,不可控变量或扰动变量,用列向量d表示。,(2)电源发出的有功、无功功率PG1、PG2、QG1、QG2。控制变量,用列向量表示。,(3)母线或节点电压的大小和相位角U1、U2、1、2。状态变量或受控变量,UQ, P,用列向量x表示。,59,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,2、变量的分类,对于n个节点,变量数增为6n,其中d、x各2n个。,将上述变量进行分类后,只要已知或给定扰动变量和控制变量,就可运用功率方程式解出状态变量U,。,但是当1 、2 变化同样大小时,功率的数值不变,从而不可能求出绝对相位角,相应的功率损耗也不能确定。,?,60,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,2、变量的分类,为克服上述困难,在一个具有n个节点的系统中,对变量的给定稍作调整:,(1)只给定(n-1)对控制变量PGi、QGi,余下一对控制变量PGs、QGs待定,以使系统功率保持平衡;,(2)给定一对s、Us,其中;,PLi、QLi均为已知。,求解(n-1)对状态变量及一对待定的控制变量,61,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,2、变量的分类,得出的解应满足如下约束条件:,控制变量,取决于一系列的技术经济因素,62,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,2、变量的分类,得出的解应满足如下约束条件:,节点状态变量,扰动变量,63,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,3、节点的分类,64,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,3、节点的分类,(1) PQ节点:PLi、QLi;PGi、QGi,即相应的Pi、Qi给定,待求Ui、i。如按给定有功、无功发电的发电厂母线和没有其他电源的变电所母线,(2) PU节点: PLi、 PGi ,从而Pi给定; QLi 、Ui给定。即相应的Pi、Ui给定,待求QGi、i。如有一定无功储备电源变电所母线(很少,甚至没有)。,(3) 平衡节点: 一般只有一个。设s节点为平衡节点,则: PLs、QLs ;Us 、 s 给定, Us 1.0, s 0。待求PGs、QGs。,65,42 功率方程及其迭代解法,二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),66,42 功率方程及其迭代解法,二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),67,42 功率方程及其迭代解法,二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),68,42 功率方程及其迭代解法,二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),若式中的aij对于Yij、xi对应Ui,yi对应,69,42 功率方程及其迭代解法,二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),此时可用迭代法求解。如设节点1为平衡节点,其余为PQ节点,则有:,70,42 功率方程及其迭代解法,二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),此时可用迭代法求解。如设节点1为平衡节点,其余为PQ节点,则有:,71,42 功率方程及其迭代解法,二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),此时可用迭代法求解。如设节点1为平衡节点,其余为PQ节点,则有:,计算步骤为:,72,42 功率方程及其迭代解法,二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),对各类节点的计算和处理 由于节点的类型不同,已知条件和求解对象不同,约束条件不同,在计算过程中的处理不同。,(1)PQ节点:按标准迭代式直接迭代;,(2)PV节点:已知的式Pp和Up,求解的是Qp,p;按标准迭代式算出Up (k), p (k)后,首先修正:,然后修正,73,42 功率方程及其迭代解法,二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),对各类节点的计算和处理,检查无功是否越限,如越限,取限值,此时:PVPQ,74,42 功率方程及其迭代解法,三、牛顿拉夫逊迭代法(常用于解非线性方程),原理:,按泰勒级数展开,并略去高次项,75,42 功率方程及其迭代解法,三、牛顿拉夫逊迭代法(常用于解非线性方程),原理:,76,42 功率方程及其迭代解法,三、牛顿拉夫逊迭代法(常用于解非线性方程),77,42 功率方程及其迭代解法,三、牛顿拉夫逊迭代法(常用于解非线性方程),78,42 功率方程及其迭代解法,三、牛顿拉夫逊迭代法(常用于解非线性方程),79,42 功率方程及其迭代解法,三、牛顿拉夫逊迭代法(常用于解非线性方程),80,42 功率方程及其迭代解法,三、牛顿拉夫逊迭代法(常用于解非线性方程),81,例题:如图所示,母线1为平衡节点,10,U11.0,母线2为PV节点,U20.95,P2PG2PL2422,母线3为PQ节点, P3PL34.0 , Q3QL31.5 。试写出此系统的功率方程。,82,42 功率方程及其迭代解法,三、牛顿拉夫逊迭代法(常用于解非线性方程),(1)将xi(0)代入,算出f,J中各元素,代入上式方程组,解出xi(0);,(2)修正xi(1) xi(0) xi(0) ,算出f,J中各元素,代入上式方程组,解出 xi(1) ;,83,42 功率方程及其迭代解法,三、牛顿拉夫逊迭代法(常用于解非线性方程),(1)将xi(0)代入,算出f,J中各元素,代入上式方程组,解出xi(0);,(2)修正xi(1) xi(0) xi(0) ,算出f,J中各元素,代入上式方程组,解出 xi(1) ;,计算步骤:,注意:xi的初值要选得接近其精确值,否则将不迭代。,84,4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,节点电压用直角坐标表示:,85,4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,首先对网络中各节点作如下约定: (1)网络中共有n个节点,编号为1,2,3,n; (2)网络中(m1)个PQ节点,一个平衡节点,编号为1,2,m,其中1sm为平衡节点; (3)nm个PV节点,编号为m+1,m+2,,n.,86,4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,(m-1)个PQ节点(n-m)个PV节点,共n-1个,(m-1)个PQ节点,(n-m)个PV节点,87,4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,相应的:,88,4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,用直角坐标表示的修正方程,PQ节点,PV节点,89,4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,用直角坐标表示的修正方程,90,4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,用直角坐标表示的修正方程,91,4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,以极坐标表示的另一种修正方程式为,PQ节点,PV节点,92,用极坐标表示的修正方程式为,4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,93,4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,雅可比矩阵的特点: (1)雅可比矩阵各元素均是节点电压相量的函数,在迭代过程中,各元素的值将随着节点电压相量的变化而变化。因此,在迭代过程中要不断重新计算雅可比矩阵各元素的值; (2)雅可比矩阵各非对角元素均与YijGijjBij有关,当Yij0,这些非对角元素也为0,将雅可比矩阵进行分块,每块矩阵元素均为22阶子阵,分块矩阵与节点导纳矩阵有相同的稀疏性结构; (3)非对称矩阵。,94,4-3牛顿拉夫逊迭代法潮流计算,二、潮流计算基本步骤,95,4-4 PQ分解法潮流计算,一、潮流计算时的修正方程式,(m-1)(m-1),(n-1)(m-1),96,4-4 PQ分解法潮流计算,一、潮流计算时的修正方程式,1、对修正方程式的第一步简化 高压网络中,各元件的XR,P,相应的J0;U Q,N 0。,97,4-4 PQ分解法潮流计算,一、潮流计算时的修正方程式,2、对修正方程式的第二步简化 高压网络中,各元件的XR,使GijBij,再加上系统稳定性的要求,即| i j| | i j|max, | i j|max(10 20)。,3、对修正方程式的第三步简化,98,4-4 PQ分解法潮流计算,一、潮流计算时的修正方程式,99,4-4 PQ分解法潮流计算,一、潮流计算时的修正方程式,100,4-4 PQ分解法潮流计算,一、潮流计算时的修正方程式,缩写为,101,42 网络方程的解法,高斯消去法 带有节点电流移置的星网变换,102,43 节点阻抗矩阵,用支路追加法形成 Z 矩阵,0,1,2,4,3,103,43 节点阻抗矩阵,第一条支路必须是接地支路 后追加的支路必须至少有一个端点与已出现的节点相接,用支路追加法形成 Z 矩阵,104,电力网,ziq,i,q,43 节点阻抗矩阵,用支路追加法形成 Z 矩阵,电力网,k,m,追加树枝,追加连枝,zkm,105,电力网,ziq,i,q,43 节点阻抗矩阵,追加树枝,追加树枝,106,电力网,ziq,i,q,43 节点阻抗矩阵,追加树枝,追加树枝,从节点 m 单独注入电流 Im,原有阻抗矩阵不变,m,107,电力网,ziq,i,q,43 节点阻抗矩阵,追加树枝,追加树枝,从节点 q 单独注入电流 Iq,m,108,电力网,ziq,i,q,43 节点阻抗矩阵,追加树枝,追加树枝,m,109,电力网,k,m,43 节点阻抗矩阵,追加连枝,Ik,Im,Ikm,Z 矩阵阶数不变,zkm,电力网,k,m,Ik- Ikm,Im+ Ikm,110,43 节点阻抗矩阵,追加连枝,111,43 节点阻抗矩阵,追加连枝,112,43 节点阻抗矩阵,追加连枝,113,43 节点阻抗矩阵,追加连枝,如果m点接地,114,电力网,ziq,i,q,43 节点阻抗矩阵,追加树枝,追加树枝,m,115,43 节点阻抗矩阵,追加连枝,如果将k、m两点短接,经过修改后,第k行(列)和第m行(列)的对应元素完全相同。只要将原来这两个节点的注入电流并到其中的一个节点,另外一个节点即可取消,并消去阻抗矩阵中对应的行和列,使矩阵降低一阶。,116,电力网,zkq,k,43 节点阻抗矩阵,追加变压器树枝,q,1:K,原有阻抗矩阵不变,117,ziq,k,43 节点阻抗矩阵,追加变压器树枝,q,1:K,m,从节点 m 单独注入电流 Im,118,43 节点阻抗矩阵,追加变压器树枝,从节点 q 单独注入电流 Iq,ziq,i,q,1:K,m,119,电力网,ziq,k,43 节点阻抗矩阵,追加变压器连枝,q,1:K,m,120,44 节点编号顺序的优化,消去时增加新支路最少的节点应该优先编号 简化为按节点的连接支路数k(接地支路除外)最少进行编号 静态优化编号 动态优化编号,121,第五章 P-Q分解法,P-Q分解法是牛顿-拉夫逊法潮流计算的一种简化方法。 牛顿-拉夫逊法的缺点:牛顿-拉夫逊法的雅可比矩阵在每一次迭代过程中都有变化,需要重新形成和求解,这占据了计算的大部分时间,成为牛顿-拉夫逊法计算速度不能提高的主要原因。 P-Q分解法利用了电力系统的一些特有的运行特性,对牛顿-拉夫逊法做了简化,以改进和提高计算速度。,122,牛顿-拉夫逊法简化形成P-Q分解法的过程,牛顿-拉夫逊法修正方程展开为: 根据电力系统的运行特性进行简化: 考虑到电力系统中有功功率分布主要受节点电压相角的影响,无功功率分布主要受节点电压幅值的影响,所以可以近似的忽略电压幅值变化对有功功率和电压相位变化对无功功率分布的影响,即:,123,根据电力系统的正常运行条件还可作下列假设: 电力系统正常运行时线路两端的电压相位角一般变化不大(不超过1020度); 电力系统中一般架空线路的电抗远大于电阻; 节点无功功率相应的导纳Q/U*U远小于该节点的自导纳的虚部。 用算式表示如下:,124
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 襄阳职业技术学院《英语:听力》2023-2024学年第二学期期末试卷
- 西安建筑科技大学《镜前表演及实践》2023-2024学年第二学期期末试卷
- 浙江省杭州下城区重点达标名校2024-2025学年初三1月份阶段模拟测试语文试题试卷含解析
- 江西航空职业技术学院《Python语言程序设计Ⅱ》2023-2024学年第二学期期末试卷
- 南充职业技术学院《中国地理(二)》2023-2024学年第二学期期末试卷
- 宁夏大学《孙冶方经济科学奖与中国经济发展》2023-2024学年第二学期期末试卷
- 昆山杜克大学《日语笔译》2023-2024学年第二学期期末试卷
- 重庆工贸职业技术学院《生物工程专业实验(一)》2023-2024学年第二学期期末试卷
- 吉林省松原市乾安县七中2025届普通高中毕业班3月质量检查英语试题含解析
- 浙江省绍兴实验学校2025年初三英语试题第三次质量检测试题试卷含答案
- 中国晕厥诊断与治疗专家共识(更新)
- 市政公用工程设计文件编制深度规定(2013年高清版)
- GB/T 3512-2001硫化橡胶或热塑性橡胶热空气加速老化和耐热试验
- GA 1512-2018公安单警装备金属手铐
- 产品表面达克罗处理作业指导书
- 年度设备维护保养计划表
- 幼儿园中班语言《跑跑镇》课件
- 引水隧洞回填灌浆技术交底
- 送达地址确认书(样本)
- 讲师课时费签收表
- 方舟洪荒代码
评论
0/150
提交评论