已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
引力规则下二维平面上加边网络渗流的数值模拟,报告人:贾龙涛 导 师:朱陈平 单 位:南京航空航天大学,2,提纲,研究背景 研究动机 二维平面上网络渗流的引力模型 随距离d次方衰减 在通讯范围内的拓扑连边 在通讯范围内随距离d次方衰减 数值模拟的结果 总结,3,研究背景:Product Rule,B:Achlioptas 加边过程,即PR规则,随机选取两条备选连边, 计算四个结点所在组元的质量M1,M2,M3,M4。如果 选择e1相连。,A:ER网络生成规则,随机选取不相连的两点相连。,Science, Achlioptas, 323, 1453-1455(2009),C:A B两过程中,巨组元的大小(质量)比例随着加边数目增加时的相变。,4,研究背景:通讯半径和实际距离,通讯半径 ad hoc网络中,每一通讯结点由于节能的要求,不能和所有节点直接相连,因此每个终端都有一个有限的通讯范围。 实际距离 大多数的现实网络中,连边与否与实际距离有关,一般来说,连边概率是随距离而衰减的。,G.Li, H.E.Stanley , PRL 104(018701). 2010.,Yanqing.Hu, Zengru.Di , arxiv. 2010.,5,研究背景:随距离d次方衰减,G.Li, H.E.Stanley , PRL 104(018701). 2010.,a即本文中d,均为可调参数,6,研究背景:引力模型,诠释双边贸易流量的分析工具。 双边贸易流量的规模与它们各自的经济总量呈正比,而与它们之间的距离呈反比。,J. E. Anderson, The American Economic Review, 1979,Deardorff, A.V., NBER Working Paper 5377.1995.,J.H. Bergstrand ., The review of economics and statistics.1985.,E Helpman, PR Krugman , MIT press Cambridge.1985.,J.Tinbergen, 1962. P, Pyhnen, Weltwirtschaftliches Archiv, 1963,7,研究动机,当PR规则结合距离因素时会有什么结果? 1.引力规则 2.通讯距离内的拓扑连接 3.通讯距离内的引力规则 连续渗流相变-爆炸渗流? PR规则可能的应用背景?,8,模型一:随距离d次方衰减,与PR规则一样,产生两条边,计算四个节点所在组元的质量,N 结点总数; L 网格宽度;T=连边总数/N; R 结点间实际距离;M 组元质量 d 可调参量; r 通讯半径;C=巨组元质量/N; Tc 相变点;N=L*L;,9,PR的推广-最小引力规则,Achlioptas 红线:爆炸渗流 黑线:ER随机图的渗流,最小引力规则下,渗流概率随距离幂次d 衰减的变化。插图:Tc(d) N=128*128. d: 0-50. 100次系综平均,当d-无穷,爆炸渗流过渡到ER网络的连续渗流。,10,PR的推广-最大引力规则,最大引力规则下,渗流概率C(T,d)的标度关系。,其中:a=-0.006, s=0.17 N=L*L, L=128, T0=0.826,11,模型二:通讯半径内拓扑连边,紫色圆圈:通讯半径,令d=0.,在给定的通讯半径 r 以内,12,通讯半径内拓扑连边的结果,最大引力规则:,最小引力规则:,在有通讯半径限制的情况下,两点之间拓扑相连,不计距离衰减因素,没有发现标度关系。随着r的增大,通讯半径的限制作用越弱,趋于PR规则。,13,模型三:通讯半径内的引力模型,在通讯半径 r 内,紫色圆圈:通讯半径,14,通讯半径内的引力规则:最大引力,给定d,在不同的通讯半径 r 下, 运用最大引力规则选边 当 r 从 3 到 8之间时,有标度关系:,其中 d=0.1,h=0.1, d=2, N=L*L, L=128,r0=2,15,通讯半径内的引力规则:最小引力,给定r,在不同的d值下,运用最小引力规则选边,有标度关系:,其中:f=0.23,w=-0.01,r=5,L=128,N=L*L,T0=3,16,有限尺寸标度变换:连续相变的标度律,F.Radicchi, PRL, 103,168701,(2009),g/n = 1-b/n.,1/n=0.2, b/n=0.005, g/n=0.995,连续相变,指数之间符合标度律:,给定通讯半径 r 和距离衰减指数 d ,,17,总结,依据实际背景:引力模型,COST模型,adhoc通讯网络,改造了PR规则。在最小引力规则下,实现了爆炸渗流向ER网络连续渗流相变的过渡。 推广PR规则,建立了三个新的模型:最大引力,最小引力,有限通讯半径,以及它们的结合。数值计算结果发现了五个标度关系。,给定通讯半径 r 和距离衰减指数 d ,有限尺度的标度变换,验证连续相变的标度律: g/n = 1-b/n.,18,参考文献,1 D. Achlioptas. R. M. DSouza. and J. Spencer, “Explosive Percolation in Random Networks”, Science, vol. 323, pp. 1453-1455, Mar. 2009. 2 R. M. Ziff, “Explosive Growth in Biased Dynamic Percolation on Two-Dimensional Regular Lattice Networks”, Phys. Rev. Lett, vol. 103, pp. 045701(1)-(4), Jul. 2009. 3 Y. S. Cho. et al, “Percolation Transitions in Scale-Free Networks under the Achlioptas Process”, Phys. Rev. Lett, vol. 103, pp. 135702(1)-(4), Sep. 2009. 4 F. Radicchi and S. Fortunato, “Explosive Percolation in Scale-Free Networks”, Phys. Rev Lett, vol. 103, pp. 168701(1)-168701(4), Oct. 2009. 5 Friedman EJ, Landsberg AS, “Construction and Analysis of Random Networks with Explosive Percolation”, Phys. Rev Lett, vol. 103, 255701, Dec. 2009. 6 DSouza RM, Mitzenmacher M, “Local Cluster Aggregation Models of Explosive Percolation”, Phys. Rev Lett, vol. 104, 195702, May. 2010. 7 Moreira AA, Oliveira EA, et al. “Hamiltonian approach for explosive percolation”, Physical Review E, vol. 81, 04
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024医院临时工聘用合同参考范文
- 2024房屋转租合同简单版范本
- 2024钟点工劳动合同范本
- 2024绿化养护管理委托版合同
- 2024总经销合同范本范文
- 施工合同协议书样本
- 终止业务往来协议书
- 2024年软件变更协议书范文
- 商业秘密保护技术协议书
- 2023年高考地理重点难点考点通练-产业结构升级(解析版)
- 教案评分标准
- 中药饮片处方点评表
- 《节能监察的概念及其作用》
- 综合布线系统竣工验收表
- 蔬菜会员卡策划营销推广方案多篇
- 导管滑脱应急预案及处理流程
- (精选word)三对三篮球比赛记录表
- 大型火力发电厂专业词汇中英文翻译大全
- 火电厂生产岗位技术问答1000问(电力检修)
- 八年级思想读本《4.1“涉险滩”与“啃硬骨头”》教案(定稿)
- 高中语文教学课例《荷塘月色》课程思政核心素养教学设计及总结反思
评论
0/150
提交评论