已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019/7/7,材料力学,1,材料力学,第十二章 超静定结构,2019/7/7,材料力学,2,121 超静定结构概述,12-4 连续梁与三弯矩方程,第十二章 超静定结构,123 用力法解超静定结构,122 弯曲超静定问题,2019/7/7,材料力学,3,超静定结构,用静力学平衡方程无法确定全部约束力和内力的结构,统称为超静定结构或系统,也称为超静定结构或系统。,121 超静定结构概述,在超静定结构中,超过维持静力学平衡所必须的约束称为多余约束,多余约束相对应的反力称为多余约束反力,多余约束的数目为结构的超静定次数。,2019/7/7,材料力学,4,超静定问题分类,第一类:仅在结构外部存在多余约束,即支反力是静 不定的,可称为外力超静定系统。,第二类:仅在结构内部存在多余约束,即内力是静不 定的,可称为内力超静定系统。,第三类:在结构外部和内部均存在多余约束,即支反 力和内力是超静定的。,超静定结构,2019/7/7,材料力学,5,第一类,第二类,第三类,超静定结构,2019/7/7,材料力学,6,122 弯曲超静定问题,1、处理方法:变形协调方程、物理方程与平衡方程相结合,求全部未知力。,解:建立静定基,确定超静定次数,用反力代替多余约束所得到的结构静定基。,=,A,B,x,y,超静定结构,2019/7/7,材料力学,7,几何方程变形协调方程,+,=,物理方程变形与力的关系,补充方程,求解其它问题(反力、应力、 变形等),超静定结构,2019/7/7,材料力学,8,几何方程 变形协调方程:,解:建立静定基,=,例6 结构如图,求B点反力。,LBC,x,y,C,=,+,超静定结构,2019/7/7,材料力学,9,=,LBC,x,y,C,+,物理方程变形与力的关系,补充方程,求解其它问题(反力、应力、 变形等),超静定结构,2019/7/7,材料力学,10,123 用力法解超静定结构,一、力法的基本思路(举例说明),解:判定多余约束反力的数目 (一个),选取并去除多余约束,代 以多余约束反力,列出变形 协调方程,见图(b)。,超静定结构,2019/7/7,材料力学,11,变形协调方程,用能量法计算 和,由莫尔定理可得(图c、d、e),超静定结构,2019/7/7,材料力学,12,求多余约束反力,将上述结果代入变形协调方程得,求其它约束反力,由平衡方程可求得A端反力,其大小和方向见图(f)。,作弯矩图,见图(g)。,求梁中点的挠度,超静定结构,2019/7/7,材料力学,13,选取基本静定系( 见图( b) 作为计算对象。单位载荷如图(h) 。,用莫尔定理可得,注意:对于同一超静定结构,若选取不同的多余约束,则基本静定系也不同。本题中若选固定段处的转动约束为多余约束,基本静定系是如图(i)所示的简支梁。,超静定结构,2019/7/7,材料力学,14,二、力法正则方程,上例中以未知力为未知量的变形协调方程可改写成下式,X1多余未知量; d11在基本静定系上, X1取单位值时引起的在X1作用点沿 X1方向的位移; D1P在基本静定系上, 由原载荷引起的在X1作用点沿 X1方向的位移;,变形协调方程的标准形式,即所谓的力法正则方程。,超静定结构,2019/7/7,材料力学,15,对于有无数多余约束反力的超静定系统的正则方程如下:,由位移互等定理知:,dij:影响系数,表示在基本静定系上由Xj取单位值时引起的 在Xi作用点沿Xi方向的位移; DiP:自由项,表示在基本静定系上, 由原载荷引起的在Xi 作用点沿Xi 方向的位移。,超静定结构,2019/7/7,材料力学,16,例2 试求图示刚架的全部约束反力,刚架EI为常数。,q,a,A,B,a,解:刚架有两个多余约束。,选取并去除多余约束,代以多 余约束反力。,建立力法正则方程,计算系数dij和自由项DiP,用莫尔定理求得,超静定结构,2019/7/7,材料力学,17,超静定结构,2019/7/7,材料力学,18,求多余约束反力,将上述结果代入力法正则方程可得,求其它支反力,由平衡方程得其它支反力,全部表示于图中。,超静定结构,2019/7/7,材料力学,19,三、对称与反对称性质的利用,结构几何尺寸、形状,构件材料及约束条件均对称于某一轴,则称此结构为对称结构。,当对称结构受力也对称于结构对称轴,则此结构将产生对称变形。若外力反对称于结构对称轴,则结构将产生反对称变形。,超静定结构,2019/7/7,材料力学,20,正确利用对称、反对称性质,则可推知某些未知量,可大大简化计算过程:如对称变形对称截面上,反对称内力为零或已知;反对称变形反对称截面上,对称内力为零或已知。,例如:,超静定结构,2019/7/7,材料力学,21,例3 试求图示刚架的全部约束反力。刚架EI为常数。,A,B,C,P,P,a,a,解:图示刚架有三个多余未知力。但由于结构是对称的,而载荷反对称,故对称轴横截面上轴力、弯矩为零,只有一个多余未知力(剪力),只需列出一个正则方程求解。,用莫尔定理求D1P和d11。,超静定结构,2019/7/7,材料力学,22,则,由平衡方程求得:,超静定结构,2019/7/7,材料力学,23,12-4 连续梁与三弯矩方程,为减小跨度很大直梁的弯曲变形和应力,常在其中间安置若干中间支座,在建筑、桥梁以及机械中常见的这类结构称为连续梁。撤去中间支座,该梁是两端铰支的静定梁,因此中间支座就是其多余约束,有多少个中间支座,就有多少个多余约束,中间支座数就是连续梁的超静定次数。,一、连续梁与超静定次数,超静定结构,2019/7/7,材料力学,24,二、三弯矩方程,连续梁是超静定结构,静定基可有多种选择,如果选撤去中间支座为静定基,则因每个支座反力将对静定梁的每个中间支座位置上的位移有影响,因此正则方程中每个方程都将包含多余约束反力,使计算非常繁琐。,如果设想将每个中间支座上的梁切开并装上铰链,将连续梁变成若干个简支梁,每个简支梁都是一个静定基。,这相当于把每个支座上梁的内约束解除,即将其内力弯矩M1、M2、Mn-1、Mn、作为多余约束力(见上图),则每个支座上方的铰链两侧截面上需加上大小相等、方向相反的一对力偶矩,与其对应的位移是两侧截面的相对转角。,超静定结构,2019/7/7,材料力学,25,如从基本静定系中任意取出两个相邻跨度ln、ln+1,由于是连续梁,挠曲线在n支座处光滑连续,则 变形协调条件为:,n-1,n+1,n,ln,ln+1,超静定结构,2019/7/7,材料力学,26,1.求qn左: (可查表,再用叠加法; 也可用图乘法或莫尔积分),2.求qn右:,超静定结构,2019/7/7,材料力学,27,三弯矩方程,对于连续梁的每一个中间支座都可以列出一个三弯矩方程.,所以可能列出的方程式的数目恰好等于中间支座的数目,也就是等于超静定的次数。,而且每一个方程式中只含有三个多余约束力偶矩,这就使得计算得以一定的简化。,如各跨截面相同, 即 In = In+1 ,则三弯矩方程简化为:,超静定结构,2019/7/7,材料力学,28,例4 试用三弯矩方程作等刚度连续梁AC的弯矩图。见图(a)。,解:AC梁总共有二跨,跨长l1=l2=l 。中间支座编号应取为1,即n=1。由于已知0,2两支座上无弯矩,故,(a),超静定结构,2019/7/7,材
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论