




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一节 向量的内积与欧氏空间,一、欧氏空间的定义,在线性空间中,向量之间的基本运算只有加 法和数量乘法。如果我们以几何空间中的向量作 为线性空间理论的一个具体模型,那么就会发现 向量的度量性质,如长度、夹角等,在线性空间 理论中没有得到反映。但是向量的度量性质在许 多问题中有着特殊的地位,因此有必要引入度量 的概念。,在解析几何中,向量的长度与夹角等度量性质是通过向量的内积来表示的,而向量的内积具有明显的代数性质,所以在抽象的讨论中,我们取内积作为基本的概念。,定义 1 设V是实数域R上的线性空间,对V中任意两个元素,确定一个实数(, ),如果它具有以下性质,(1),(2),(3),(4) 当且仅当 时,这里,是V中任意的向量,k是任意实数, 这样的线性空间称为欧几里得空间, 称为 与的内积。,例 1 对于n 维向量空间Rn中的向量,定义,则数(, )被唯一确定,并且满足,(1),(2),(3)如果,则,(4),当且仅当,时,所以向量空间Rn在所定义的内积下,构成一个欧氏空间。,二、向量的长度和夹角,在欧氏空间中也可以引入向量的长度和夹角的概念。,定义 2 非负实数 称为向量的长度,记 为 。显然 。,定理1 (Cauchy-Schwarz不等式)对于欧氏空间中任意两个向量,有,当且仅当, 线性相关时,等号成立。(证略),定义 3 设, 是欧氏空间中的两个非零向量,规定,为向量与的夹角。,定义 4 设V 是一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专杀电脑病毒方法介绍
- 2025智能解决方案订购服务合同样本
- 志愿者服务月活动策划书
- 《财务分析的课件探索》
- 2025国际商务总代理合同
- 2025数字音乐版权授权合同
- 《分离技术的换热设备》课件
- 《同工酶与气体酶学》课件
- 《算法与程序设计》课件
- 2025国内购销合同
- 2025年春季学期初中历史中考复习计划
- 第1课时 数与运算(说课稿)-2024-2025学年一年级上册数学人教版
- 内蒙古地区历年中考语文现代文之记叙文阅读63篇(截至2024年)
- 2023年4月信息素养系列培训讲座
- 屋顶光伏支架安装施工方案
- 挖掘机司机岗位安全培训课件
- 新能源购售电合同模板
- 2024年中国浴室套件市场调查研究报告
- 电炉炼钢工职业技能知识考试题(附答案)
- 依法治县业务培训
- 2024年一级建造师《建设工程项目管理》真题及答案
评论
0/150
提交评论