超导材料发展现状与展望.ppt_第1页
超导材料发展现状与展望.ppt_第2页
超导材料发展现状与展望.ppt_第3页
超导材料发展现状与展望.ppt_第4页
超导材料发展现状与展望.ppt_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

姜羽佳 200831201010 贠潇 200831304052 刘飞 200831201027 努尔扎提 200831201024 马云洲 200831201025 刘志明 200831201026 廖冬淋 200831201021,超导材料发展现状与展望,现今科学技术告诉发展的年代,在许多领域产生了巨变!任何一点不经意地发现都能促使一个领域翻天覆地的变化。如今,超导材料的进展是有目共睹的。本文旨在介绍超导现象,基本理论和一些重要的超导材料的研究应用;阐述超导材料发展历史,目前的进展及未来的发展前景。,超导材料是在低温条件下能出现超导电性的物质。超导材料最独特的性能是电能在输送过程中几乎不会损失。近年来,随着材料科学的发展,超导材料的性能不断优化,实现超导的临界温度也越来越高。一旦室温超导题达到实用化、工业化,将对现代文明社会中的科学技术产生深刻的影响。,超导材料的探索与发展,导电材料的电阻会不断消耗电能,这在远距离电能传输中一直是一个很大的问题。寻找一种极低电阻甚至没有电阻的材料一直是物理科学家们梦寐以求的愿望。人们很早就发现了良导体的电阻会随着环境温度的降低而减小,因而科学工作者致力于创造一个低温环境,寻求电阻减小的规律。17世纪末阿蒙顿提出了温度下限(绝对零度)的概念,到了18世纪,盖.吕萨克.查理斯确定了绝对零度为-273C。直到1908年莱顿实验室成功液化氦,获得4.25K以下极低温,开创了极低温物性研究。,1911年,昂尼斯发现温度降到4.2K时,汞的电阻突然降为零的现象,当温度回到4.2K以上,汞重新恢复电阻性的。某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。 1911年到1955年,是人类对超导体基本认识和探索阶段,相继发现了临界温度(1911),临界电流(1933),迈斯纳效应(1933)。 1955年到1985年,合金与金属化合物超导体的发现使人们冲破了应用超导体的重要阻力电磁壁垒。这其中重要的发展标志之一就是几种重要化合物超导体的发现。标志之二是Nb3Sn金属间化合物超导线材制备技术的出现。从此为超导材料的应用打开了局面。 1986年至今,高温超导材料的出现是又一大重要突破,冲破了“温度壁垒”。高温超导材料的发现被视为科学界得一次“飞跃和革命”。人们终于看到了超导技术的应用希望。超导现象的研究和超导材料的制备成为科技前沿,发展越来越快。 在这个发展过程中,各种理论的提出也极大推动了超导材料研究的发展。其中比较著名的是BCS理论,获得了广泛认可。,超导材料的基本物理特性,(1)零电阻现象 (2)迈斯纳效应 (3)超导态临界参数三维图 (4)约瑟夫森效应 (5)同位素效应,零电阻现象,将超导体的温度降到某临界温度Tc时,超导体电阻突然变为零的现象,称为零电阻现象。实验表明:超导状态下的零电阻现象不仅与临界温度有关,也与超导体中的电流强度和外磁场强度有关,所以也存在着类似的临界电流和临界外磁场。,不同的材料具有不同的临界温度。某些物质临界温度非常低,例如汞为4.15K,不具有太大的应用价值。而有的超导材料的临界温度比较高,达到几十K甚至上百K,随着临界温度的提高,其应用价值也大大提高。所以如何提高超导材料的临界温度,发展出具有常温下工作能力的高温超导材料是人们重点关注的地方。,迈斯纳效应,迈斯纳效应也叫完全抗磁性。即超导体进入超导状态后,超导体内部的磁通量会全部被排除到超导体外,超导体磁场强度恒为零。而且不论是先降温后加入磁场还是先加入磁场后降温,只要进入超导状态,磁通完全被排除体外。上世纪末磁悬浮技术就是依据这个原理。,超导态临界参数三维图 (临界温度、电流、外磁场强度),约瑟夫森效应,同位素效应,超导体的临界温度Tc与其同位素质量M有关。M越大,Tc越低,这称为同位素效应。例如,原子量为199.55的汞同位素,它的Tc是4.18开,而原子量为203.4的汞同位素,Tc为4.146开。,超导电缆(电流应用),超导电缆的发展经历了直流低温超导电缆、交流低温超导电缆和交流高温超导电缆等几个发展过程,目前交流高温超导电缆已经成为超导电缆研究的重点。超导电缆是利用超导材料零电阻特性的新一代电力输电电缆。与常规电缆相比,超导电缆具有损耗低、容量大、材料省、无污染等优势。超导电缆的广泛应用,将降低输电损耗,改进和提高电网的稳定性和安全性,节省土地资源,保护生态环境。,超导计算机(电子学应用),高速计算机要求集成电路芯片上的元件和连接线密集排列,但密集排列的电路在工作时会发生大量的热,而散热是超大规模集成电路面临的难题。超导计算机中的超大规模集成电路,其元件间的互连线用接近零电阻和超微发热的超导器件来制作,不存在散热问题,同时计算机的运算速度大大提高。此外,科学家正研究用半导体和超导体来制造晶体管,甚至完全用超导体来制作晶体管。,利用超导材料的抗磁性,将超导材料放在一块永久磁体的上方,由于磁体的磁力线不能穿过超导体,磁体和超导体之间会产生排斥力,使超导体悬浮在磁体上方。利用这种磁悬浮效应可以制作高速超导磁悬浮列车。,超导电机 超导电机包括发电机和电动机。由于采用了超导绕组,与常规电机相比,能够承载更大的电流从而产生更强的磁场,所以在与常规电机功率相同的情况下,其体积和重量可以减小到常规电机的1/5 左右。这种电机的体积和质量将比常规电机显著缩小,功率成倍增长,效率大大提高,可为武器装备提供动力。 电磁推进装置 用超导强磁材料制造的电磁推进装置,把电能直接转变为动力,将能以很高的速度推进大质量的物体,在军事上用作舰艇的动力装置,可消除传动噪声,提高隐蔽性;也可用作电磁炮的动力装置。,超导强磁技术,超导强磁技术主要是利用超导材料能够产生很高的稳态强磁场,据此将可制成超导储能装置、超导电机和电磁推进装置。,超导储能装置 超导储能装置是利用超导线圈将电磁能直接储存起来,需要时再将电磁能返回电网或其它负载的一种电力设施。由于储能线圈由超导线绕制且维持在超导态,线圈中所储存的能量几乎可以无损耗地永久储存下去直到需要释放时为止。超导储能装置不仅可用于调节电力系统的峰谷或解决电网瞬间断电对用电设备的影响,而且可用于降低甚至消除电网的低频功率振荡从而改善电网的电压和频率特性,同时还可用于无功和功率因数的调节以改善电力系统的稳定性。这种储能装置将可长时期储存大量的能量,然后根据需要加以释放。大型超导储能系统将可作为陆基自由电子激光器或天基定向能武器的功率源。,超导弱磁技术,超导弱磁技术的理论基础是约瑟夫森效应。利用这种效应制成的超导电子器件,将具有功耗低、噪声小、灵敏度高、反应速度快等特点,可进行高精度、弱信号的电磁测量,也可用作超高速电子计算机元器件等。, 超导弱磁探测器件。 超导量子干涉仪、电磁传感器和磁强计等,对磁场和电辐射的灵敏度比常规器件高得多,可用于军事侦察。 超导计算机。 采用约瑟夫森器件的超导计算机,运算速度将比普通计算机快几十倍,功耗减少到千分之一以下,散热性能很好。 超导高频探测器。 如超导红外探测器、参量放大器、混频器、功率放大器等,将使空间监视、通信、导航、气象和武器系统的性能远远超过利用常规器件时的性能。,超导体可制造出强磁场,由于超导材料在超导状态下具有零电阻和完全的抗磁性,因此只需消耗极少的电能,就可以获得10万高斯以上的稳态强磁场.而用常规导体做磁体,要产生这么大的磁场,需要消耗3.5兆瓦的电能及大量的冷却水,投资巨大。,未来展望,超导材料正以其独特的性能,不断地渗透到人们生活的方方面面。怎样将其只能在超低温下特有的性能运用在常温下是全世界科学家致力研究的方向。这就预示着超导材料现今乃至今后的主要研究方向,由于不断的努力,高温超导材料的研究出现。 在高温超导体发现以后,原则上说,凡是低温超导电性能获得应用并显示优越性的领域,高温超导电性也具有同样的优越性。然而高温超导体比低温超导体的最主要优势在于高温。因为高温超导体只需要廉价液氮冷却,而不是昂贵的液氨。有人甚至预言,人类社会将进入超导时代。这是因为高温超导材料如能在一系列重要领域特别是所谓强电,诸如电力输送、电机、受控核聚变、交通、医疗等领域获得应用,可能显示出巨大的优越性,将导致一场新的技术革命。,从超导材料的发展历程来看,新的更高转变温度材料的发现及室温超导的实现都有可能。单晶生长及薄膜制造工艺也会取得重大突破,但超导材料的基础研究还面临一些挑战。目前超导材料正从研究阶段向应用发展阶段转变,且有可能进入产业化发展阶段。超导材料

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论