已阅读5页,还剩83页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第九章 复数、计数原理与概率、随机变量及其分布第一节数系的扩充与复数的引入1复数的有关概念(1)复数的概念:形如abi(a,bR)的数叫复数,其中a,b分别是它的实部和虚部若b0,则abi为实数;若b0,则abi为虚数;若a0且b0,则abi为纯虚数(2)复数相等:abicdiac且bd(a,b,c,dR)(3)共轭复数:abi与cdi共轭ac,bd(a,b,c,dR)(4)复数的模:向量的模r叫做复数zabi(a,bR)的模,记作|z|或|abi|,即|z|abi|.2复数的几何意义(1)复数zabi复平面内的点Z(a,b)(a,bR)(2)复数zabi(a,bR) 平面向量 .3复数的运算(1)复数的加、减、乘、除运算法则设z1abi,z2cdi(a,b,c,dR),则加法:z1z2(abi)(cdi)(ac)(bd)i;减法:z1z2(abi)(cdi)(ac)(bd)i;乘法:z1z2(abi)(cdi)(acbd)(adbc)i;除法:i(cdi0)(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z1,z2,z3C,有z1z2z2z1,(z1z2)z3z1(z2z3)小题体验1复数z(其中i为虚数单位)的虚部为_答案:2若复数z满足i,则z_.解析:由题意得,z43i.答案:43i3(教材习题改编)四边形ABCD是复平面内的平行四边形,A,B,C三点对应的复数分别是13i,i,2i,则点D对应的复数为_答案:35i1判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义2两个虚数不能比较大小3注意不能把实数集中的所有运算法则和运算性质照搬到复数集中来例如,若z1,z2C,zz0,就不能推出z1z20;z2n.以m的值为标准分类,由分类加法计数原理,可分为四类:第一类:m5时,使mn,n有4种选择;第二类:m4时,使mn,n有3种选择;第三类:m3时,使mn,n有2种选择;第四类:m2时,使mn,n有1种选择故符合条件的椭圆共有10个答案:103(2018诸暨模拟)小王同学在书店发现三本有价值的书,若决定买一本,则购买的方式有_种;决定至少买一本,则购买的方式有_种解析:根据题意,若只买一本,则有3种选择;若只买2本,则有3种选择;若买3本,则有1种选择由分类加法计数原理可知:N3317种答案:37谨记通法利用分类加法计数原理解题时2个注意点(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;(2)分类时,注意完成这件事件的任何一种方法必须属于某一类,不能重复题组练透1将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同分法的种数是()A2 160B720C240D120解析:选B分步来完成此事第1张有10种分法;第2张有9种分法;第3张有8种分法,则共有1098720(种)分法2(2018台州模拟)有4个不同书写形式的“迎”字和3个不同书写形式的“新”字,如果一个“迎”字和一个“新”字能配成一套,则不同的配套方式共有()A7种 B12种 C64种 D81种解析:选B分两步进行,第一步,选“迎”字,有4种不同的选法;第二步,选“新”字,有3种不同的选法,所以由分步乘法计数原理可知:N4312种3从1,0,1,2这四个数中选三个不同的数作为函数f(x)ax2bxc的系数,则可组成_个不同的二次函数,其中偶函数有_个(用数字作答)解析:一个二次函数对应着a,b,c(a0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有33218(个)二次函数若二次函数为偶函数,则b0,同上可知共有326(个)偶函数答案:186谨记通法利用分步乘法计数原理解题时3个注意点(1)要按事件发生的过程合理分步,即分步是有先后顺序的(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事(3)对完成每一步的不同方法数要根据条件准确确定典例引领1如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A24 B48 C72 D96解析:选C分两种情况:(1)A,C不同色,先涂A有4种,C有3种,E有2种,B,D有1种,有43224(种)涂法(2)A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有432248(种)涂法故共有244872种涂色方法2已知集合M1,2,3,4,集合A,B为集合M的非空子集,若对任意xA,yB,xy恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有_个解析:当A1时,B有231种情况;当A2时,B有221种情况;当A3时,B有1种情况;当A1,2时,B有221种情况;当A1,3,2,3,1,2,3时,B均有1种情况所以满足题意的“子集对”共有7313317(个)答案:17由题悟法两个原理应用的关键(1)应用两个计数原理的难点在于明确分类还是分步(2)分类要做到“不重不漏”,正确把握分类标准是关键(3)分步要做到“步骤完整”,步步相连才能将事件完成(4)较复杂的问题可借助图表完成即时应用1如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A48 B18 C24 D36解析:选D分类讨论:第一类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有21224(个);第二类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个所以正方体中“正交线面对”共有241236(个)2.如图,用6种不同的颜色把图中A,B,C,D 4块区域分开,若相邻区域不能涂同一种颜色,则涂色方法共有_种(用数字作答)解析:从A开始涂色,A有6种涂色方法,B有5种涂色方法,C有4种涂色方法,D有4种涂色方法由分步乘法计数原理可知,共有6544480(种)涂色方法答案:480一抓基础,多练小题做到眼疾手快1a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同选法的种数是()A20B16C10 D6解析:选B当a当组长时,则共有144(种)选法;当a不当组长时,因为a不能当副组长,则共有4312(种)选法因此共有41216种选法2(2018江山模拟)某班班干部有5名男生,4名女生,从中各选一名干部参加学生党校培训,则不同的选法种数有()A9 B20C16 D24解析:选B先选男生,有5种不同的选法,再选女生,有4种不同的选法由分步乘法计数原理可知:N5420.3某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从09这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有()A180种 B360种C720种 D960种解析:选D按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法因此车牌号码可选的所有可能情况有53444960(种)4从0,1,2,3,4这5个数字中任取3个组成三位数,其中奇数的个数是_;3的倍数的个数有_解析:从1,3中取一个排个位,故排个位有2种方法;排百位不能是0,可以从另外3个数中取一个,有3种方法;排十位有3种方法故所求奇数的个数为33218.若有0,则另两个数分别为1,2或2,4,则不同的三位数有2228种,若有3,则另两个数分别为1,2或2,4,则不同的三位数有32212种,所以满足条件的3的倍数的个数为81220个答案:18205在2016年里约奥运会百米决赛上,8名男运动员参加100米决赛其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有_种解析:分两步安排这8名运动员第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排安排方式有43224(种)第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,所以安排方式有54321120(种)安排这8人的方式有241202 880(种)答案:2 880二保高考,全练题型做到高考达标1设集合A1,0,1,集合B0,1,2,3,定义A*B(x,y)|xAB,yAB,则A*B中元素的个数是()A7 B10C25 D52解析:选B因为集合A1,0,1,集合B0,1,2,3,所以AB0,1,AB1,0,1,2,3,所以x有2种取法,y有5种取法,所以根据分步乘法计数原理得有2510(个)2从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为()A56 B54C53 D52解析:选D在8个数中任取2个不同的数共有8756(个)对数值,但在这56个对数值中,log24log39,log42log93,log23log49,log32log94,即满足条件的对数值共有56452(个)3从集合1,2,3,10中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A3 B4C6 D8解析:选D当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为时,等比数列可为4,6,9.同理,公比为,时,也有4个故共有8个等比数列4用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A144个 B120个C96个 D72个解析:选B当万位数字为4时,个位数字从0,2中任选一个,共有2A个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有CA个偶数故符合条件的偶数共有2ACA120(个)5.如图是一个由四个全等的直角三角形与一个小正方形拼成的大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方法有()A24种 B72种C84种 D120种解析:选C如图,设四个直角三角形顺次为A,B,C,D,按AB CD顺序涂色,下面分两种情况:(1)A,C不同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的2种颜色中任意取一色):有432248(种)不同的涂法(2)A,C同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的3种颜色中任意取一色):有431336(种)不同的涂法故共有483684(种)不同的涂色方法故选C.6集合Na,b,c5,4,2,1,4,若关于x的不等式ax2bxc0恒有实数解,则满足条件的集合N的个数是_解析:依题意知,集合N最多有C10(个),其中对于不等式ax2bxc0,且b24ac0,因此只有当a,c同号时才有可能,共有2种情况,因此满足条件的集合N的个数是1028.答案:87在一个三位数中,若十位数字小于个位和百位数字,则称该数为“驼峰数”,比如“102”,“546”为“驼峰数”由数字1,2,3,4可构成无重复数字的“驼峰数”有_个其中偶数有_个解析:十位上的数为1时,有213,214,312,314,412,413,共6个,十位上的数为2时,有324,423,共2个,所以共有628(个)偶数为214,312,314,412,324,共5个答案:858.如图所示,用五种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有_种解析:按区域分四步:第一步,A区域有5种颜色可选;第二步,B区域有4种颜色可选;第三步,C区域有3种颜色可选;第四步,D区域也有3种颜色可选由分步乘法计数原理,共有5433180(种)不同的涂色方法答案:1809已知ABC三边a,b,c的长都是整数,且abc,如果b25,则符合条件的三角形共有_个解析:根据三边构成三角形的条件可知,c25a.第一类:当a1,b25时,c可取25,共1个值;第二类,当a2,b25时,c可取25,26,共2个值;当a25,b25时,c可取25,26,49,共25个值;所以三角形的个数为1225325.答案:32510已知集合M,若a,b,cM,则:(1)yax2bxc可以表示多少个不同的二次函数;(2)yax2bxc可以表示多少个图象开口向上的二次函数解:(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此yax2bxc可以表示566180(个)不同的二次函数(2)yax2bxc的图象开口向上时,a的取值有2种情况,b,c的取值均有6种情况,因此yax2bxc可以表示26672(个)图象开口向上的二次函数三上台阶,自主选做志在冲刺名校1已知集合A(x,y)|x2y21,x,yZ,B(x,y)|x|2,|y|2,x,yZ,定义集合AB(x1x2,y1y2)|(x1,y1)A,(x2,y2)B,则AB中元素的个数为()A77 B49C45 D30解析:选CA(x,y)|x2y21,x,yZ(x,y)|x1,y0;或x0,y1;或x0,y0,B(x,y)|x|2,|y|2,x,yZ(x,y)|x2,1,0,1,2;y2,1,0,1,2,AB表示点集由x11,0,1,x22,1,0,1,2,得x1x23,2,1,0,1,2,3,共7种取值可能同理,由y11,0,1,y22,1,0,1,2,得y1y23,2,1,0,1,2,3,共7种取值可能当x1x23或3时,y1y2可以为2,1,0,1,2中的一个值,分别构成5个不同的点,当x1x22,1,0,1,2时,y1y2可以为3,2,1,0,1,2,3中的一个值,分别构成7个不同的点,故AB共有255745(个)元素2(2018湖南十二校联考)若m,n均为非负整数,在做mn的加法时各位均不进位(例如:1343 8023 936),则称(m,n)为“简单的”有序对,而mn称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是_解析:第1步,110,101,共2种组合方式;第2步,909,918,927,936,990,共10种组合方式;第3步,404,413,422,431,440,共5种组合方式;第4步,202,211,220,共3种组合方式根据分步乘法计数原理,值为1 942的“简单的”有序对的个数为21053300.答案:3003.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求共有多少不同的染色方法解:可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法计数原理即可得出结论由题设,四棱锥S ABCD的顶点S,A,B所染的颜色互不相同,它们共有54360(种)染色方法当S,A,B染好时,不妨设其颜色分别为1,2,3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法可见,当S,A,B已染好时,C,D还有7种染法,故不同的染色方法有607420(种)第三节排列与组合1排列与排列数(1)排列:从n个不同元素中取出m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(2)排列数:从n个不同元素中取出m(mn)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,记作A.2组合与组合数(1)组合:从n个不同元素中取出m(mn)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(2)组合数:从n个不同元素中取出m(mn)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C.3排列数、组合数的公式及性质排列数组合数公式An(n1)(n2)(nm1) C性质An!;0!1C1;CC_;CCC备注n,mN*且mn小题体验1从3,5,7,11这四个质数中,每次取出两个不同的数分别为a,b,共可得到lg alg b的不同值的个数是()A6B8C12 D16解析:选C由于lg alg blg ,从3,5,7,11中取出两个不同的数分别赋值给a和b共有A12种,所以得到不同的值有12个2(教材习题改编)甲、乙两人从4门课程中各选修2门,则甲、乙两人所选的课程中恰有1门相同的选法有_种解析:依题意得知,满足题意的选法共有CCC24种答案:243(2018舟山模拟)用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为_解析:依题意得,满足题意的组成方法有CA48个答案:481易混淆排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关2计算A时易错算为n(n1)(n2)(nm)3易混淆排列与排列数,排列是一个具体的排法,不是数是一件事,而排列数是所有排列的个数,是一个正整数小题纠偏1方程3A2A6A的解为_解析:由排列数公式可知3x(x1)(x2)2(x1)x6x(x1),x3且xN*,3(x1)(x2)2(x1)6(x1),即3x217x100,解得x5或x(舍去),x5.答案:52某班级要从4名男生、2名女生中选派4人参加社区服务,如果要求至少有1名女生,那么不同的选派方案种数为_(用数字作答)解析:法一:依题意可得有两类选派方案:1名女生3名男生或2名女生2名男生,共有CCCC8614(种)满足要求的方案法二:6人中选4人的方案有C15种,没有女生的方案只有1种,所以满足要求的方案有14种答案:14典例引领有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻解:(1)从7人中选5人排列,有A765432 520(种)(2)分两步完成,先选3人站前排,有A种方法,余下4人站后排,有A种方法,共有AA5 040(种)(3)法一:(特殊元素优先法)先排甲,有5种方法,其余6人有A种排列方法,共有5A3 600(种)法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有A种排法,其他有A种排法,共有AA3 600(种)(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有A种方法,再将女生全排列,有A种方法,共有AA576(种)(5)(插空法)先排女生,有A种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有A种方法,共有AA1 440(种)由题悟法求解排列应用问题的6种主要方法直接法把符合条件的排列数直接列式计算优先法优先安排特殊元素或特殊位置捆绑法把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中定序问题除法处理对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列间接法正难则反、等价转化的方法即时应用1(2018桐庐期末)将5名实习老师分配到高一年级3个班实习,每班至少1名,最多2名,则不同的分配方案有()A30种B90种C180种 D270种解析:选B由题可得,每班人数可能为1,2,2的形式,所以不同的分配方案种数为NA90种2用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A324 B648C328 D360解析:选C首先应考虑“0”,当0排在个位时,有A9872(个),当0排在十位时,有AA4832(个)当不含0时,有AA487224(个),由分类加法计数原理,得符合题意的偶数共有7232224328(个)3(2018湖州调研)A,B,C,D,E等5名同学坐成一排照相,要求学生A,B不能同时坐在两旁,也不能相邻而坐,则这5名同学坐成一排的不同坐法共有_种(用数字作答)解析:先排C,D,E学生,有A种坐法,A,B不能同时坐在两旁,也不能相邻而坐,有AA种坐法,则共有A(AA)60种坐法答案:604(2018绍兴一模)将3个男同学和3个女同学排成一列,若男同学甲与另外两个男同学不相邻,则不同的排法种数为_(用数字作答)解析:根据题意,分2种情况讨论:3个男同学均不相邻,将三名女同学全排列,有A6种排法,排好后有4个空位,在4个空位中,任选3个,安排3个男同学,有A24种安排方法,此时共有624144种不同的排法;另外两个男同学相邻,将这两个男同学看成一个整体,考虑2人的顺序,有A2种情况,将三名女同学全排列,有A6种排法,排好后有4个空位,在4个空位中,任选2个,安排甲和这2个男同学,有A12种安排方法,此时共有2612144种不同的排法所以共有144144288种不同的排法答案:288典例引领某运动队有男运动员6名,女运动员4名,若选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员解:(1)任选3名男运动员,方法数为C,再选2名女运动员,方法数为C,共有CC120(种)方法(2)法一:(直接法)至少1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男,由分类加法计数原理可得总选法数为CCCCCCCC246(种)法二:(间接法)“至少有1名女运动员”的反面是“全是男运动员”,因此用间接法求解,不同选法有CC246(种)由题悟法1解决组合应用题的2个步骤(1)整体分类要注意分类时,不重复不遗漏,用到分类加法计数原理;(2)局部分步用到分步乘法计数原理2解决含有附加条件的组合问题的2种方法通常用直接法或间接法,应注意对“至少”“最多”“恰好”等词的含义的理解,对于涉及“至少”“至多”等词的组合问题,既可考虑反面情形即间接求解,也可以分类研究进行直接求解即时应用1若从1,2,3,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A60种B63种C65种 D66种解析:选D9个整数中共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有CCCC66(种)2(2018南昌模拟)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有()A30种 B36种C60种 D72种解析:选A甲、乙两人从4门课程中各选修2门有CC36(种)选法,甲、乙所选的课程中完全相同的选法有6种,则甲、乙所选的课程中至少有1门不相同的选法共有36630(种)3现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为_解析:第一类,含有1张红色卡片,不同的取法有CC264(种)第二类,不含有红色卡片,不同的取法有C3C22012208(种)由分类加法计数原理知,不同的取法共有264208472(种)答案:472锁定考向排列与组合是高考命题的一个热点,多以选择题或填空题的形式呈现,试题难度不大,多为容易题或中档题常见的命题角度有:(1)简单的排列与组合的综合问题;(2)分组、分配问题 题点全练角度一:简单的排列与组合的综合问题1(2018河南八市重点高考质量检测)将标号为1,2,3,4的四个篮球分给三位小朋友,每位小朋友至少分到一个篮球,且标号1,2的两个篮球不能分给同一个小朋友,则不同的分法种数为()A15B20C30 D42解析:选C四个篮球中两个分到一组有C种分法,三个篮球进行全排列有A种分法,标号1,2的两个篮球分给同一个小朋友有A种分法,所以有CAA36630种分法角度二:分组、分配问题2(2018广州五校联考)将5位同学分别保送到北京大学、上海交通大学、中山大学这3所大学就读,每所大学至少保送1人,则不同的保送方法共有()A150种 B180种C240种 D540种解析:选A先将5人分成三组,3,1,1或2,2,1,共有CC25(种),再将每组学生分到3所学校有A6种分法,共有256150(种)不同的保送方法通法在握1解决简单的排列与组合的综合问题的思路(1)根据附加条件将要完成事件先分类(2)对每一类型取出符合要求的元素组合,再对取出的元素排列(3)由分类加法计数原理计算总数2分组、分配问题的求解策略(1)对不同元素的分配问题对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A(n为均分的组数),避免重复计数对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数(2)对于相同元素的“分配”问题,常采用的方法是“隔板法”演练冲关1某校为了提倡素质教育,丰富学生们的课外生活,分别成立绘画、象棋和篮球兴趣小组,现有甲、乙、丙、丁四名学生报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同的报名方法有()A12种 B24种C36种 D72种解析:选C由题意可知,从4人中任选2人作为一个整体,共有C6(种),再把这个整体与其他2人进行全排列,对应3个活动小组,有A6(种)情况,所以共有6636(种)不同的报名方法2将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A12种 B10种C9种 D8种解析:选A将4名学生均分为2个小组共有3(种)分法;将2个小组的同学分给2名教师共有A2(种)分法,最后将2个小组的人员分配到甲、乙两地有A2(种)分法故不同的安排方案共有32212(种)3(2017湖州期末)某校开设A类选修课3门,B类
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论