模拟压轴大题总结详细解析——高中数学选修2-3.doc_第1页
模拟压轴大题总结详细解析——高中数学选修2-3.doc_第2页
模拟压轴大题总结详细解析——高中数学选修2-3.doc_第3页
模拟压轴大题总结详细解析——高中数学选修2-3.doc_第4页
模拟压轴大题总结详细解析——高中数学选修2-3.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2011年高考数学总复习系列高中数学选修2-3本书重点:排列组合、概率第一章 计数原理 第二章 概率一、基础知识1加法原理:做一件事有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,在第n类办法中有mn种不同的方法,那么完成这件事一共有N=m1+m2+mn种不同的方法。2乘法原理:做一件事,完成它需要分n个步骤,第1步有m1种不同的方法,第2步有m2种不同的方法,第n步有mn种不同的方法,那么完成这件事共有N=m1m2mn种不同的方法。3排列与排列数:从n个不同元素中,任取m(mn)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,从n个不同元素中取出m个(mn)元素的所有排列个数,叫做从n个不同元素中取出m个元素的排列数,用表示,=n(n-1)(n-m+1)=,其中m,nN,mn,注:一般地=1,0!=1,=n!。4N个不同元素的圆周排列数为=(n-1)!。5组合与组合数:一般地,从n个不同元素中,任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合,即从n个不同元素中不计顺序地取出m个构成原集合的一个子集。从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用表示:6【了解】组合数的基本性质:(1);(2);(3);(4);(5);(6)。7定理1:不定方程x1+x2+xn=r的正整数解的个数为。证明将r个相同的小球装入n个不同的盒子的装法构成的集合为A,不定方程x1+x2+xn=r的正整数解构成的集合为B,A的每个装法对应B的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B中每一个解(x1,x2,xn),将xi作为第i个盒子中球的个数,i=1,2,n,便得到A的一个装法,因此为满射,所以是一一映射,将r个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n份,共有种。故定理得证。推论1 不定方程x1+x2+xn=r的非负整数解的个数为推论2 从n个不同元素中任取m个允许元素重复出现的组合叫做n个不同元素的m可重组合,其组合数为8二项式定理:若nN+,则(a+b)n=.其中第r+1项Tr+1=叫二项式系数。9随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件。在大量重复进行同一试验时,事件A发生的频率总是接近于某个常数,在它附近摆动,这个常数叫做事件A发生的概率,记作p(A),0p(A)1.10.等可能事件的概率,如果一次试验中共有n种等可能出现的结果,其中事件A包含的结果有m种,那么事件A的概率为p(A)=11.互斥事件:不可能同时发生的两个事件,叫做互斥事件,也叫不相容事件。如果事件A1,A2,An彼此互斥,那么A1,A2,An中至少有一个发生的概率为p(A1+A2+An)= p(A1)+p(A2)+p(An).12对立事件:事件A,B为互斥事件,且必有一个发生,则A,B叫对立事件,记A的对立事件为。由定义知p(A)+p()=1.13相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。14相互独立事件同时发生的概率:两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。即p(AB)=p(A)p(B).若事件A1,A2,An相互独立,那么这n个事件同时发生的概率为p(A1A2 An)=p(A1)p(A2) p(An).15.独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的.16.独立重复试验的概率:如果在一次试验中,某事件发生的概率为p,那么在n次独立重复试验中,这个事件恰好发生k次的概率为pn(k)=pk(1-p)n-k.17离散型随机为量的分布列:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫随机变量,例如一次射击命中的环数就是一个随机变量,可以取的值有0,1,2,10。如果随机变量的可能取值可以一一列出,这样的随机变量叫离散型随机变量。一般地,设离散型随机变量可能取的值为x1,x2,xi,取每一个值xi(i=1,2,)的概率p(=xi)=pi,则称表x1x2x3xipp1p2p3pi为随机变量的概率分布,简称的分布列,称E=x1p1+x2p2+xnpn+为的数学期望或平均值、均值、简称期望,称D=(x1-E)2p1+(x2-E)2p2+(xn-E)2pn+为的均方差,简称方差。叫随机变量的标准差。18二项分布:如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中,这个事件恰好发生k次的概率为p(=k)=, 的分布列为01xiNp此时称服从二项分布,记作B(n,p).若B(n,p),则E=np,D=npq,以上q=1-p.19.几何分布:在独立重复试验中,某事件第一次发生时所做试验的次数也是一个随机变量,若在一次试验中该事件发生的概率为p,则p(=k)=qk-1p(k=1,2,),的分布服从几何分布,E=,D=(q=1-p).二、基础例题【必会】1乘法原理。例1 有2n个人参加收发电报培训,每两个人结为一对互发互收,有多少种不同的结对方式?解 将整个结对过程分n步,第一步,考虑其中任意一个人的配对者,有2n-1种选则;这一对结好后,再从余下的2n-2人中任意确定一个。第二步考虑他的配对者,有2n-3种选择,这样一直进行下去,经n步恰好结n对,由乘法原理,不同的结对方式有(2n-1)(2n-3)31=2加法原理。例2 图13-1所示中没有电流通过电流表,其原因仅因为电阻断路的可能性共有几种?解 断路共分4类:1)一个电阻断路,有1种可能,只能是R4;2)有2个电阻断路,有-1=5种可能;3)3个电阻断路,有=4种;4)有4个电阻断路,有1种。从而一共有1+5+4+1=11种可能。3插空法。例3 10个节目中有6个演唱4个舞蹈,要求每两个舞蹈之间至少安排一个演唱,有多少种不同的安排节目演出顺序的方式?解 先将6个演唱节目任意排成一列有种排法,再从演唱节目之间和前后一共7个位置中选出4个安排舞蹈有种方法,故共有=604800种方式。4映射法。例4 如果从1,2,14中,按从小到大的顺序取出a1,a2,a3使同时满足:a2-a13,a3-a23,那么所有符合要求的不同取法有多少种?解 设S=1,2,14,=1,2,10;T=(a1,a2,a3)| a1,a2,a3S,a2-a13,a3-a23,=(),若,令,则(a1,a2,a3)T,这样就建立了从到T的映射,它显然是单射,其次若(a1,a2,a3)T,令,则,从而此映射也是满射,因此是一一映射,所以|T|=120,所以不同取法有120种。5贡献法。例5 已知集合A=1,2,3,10,求A的所有非空子集的元素个数之和。解 设所求的和为x,因为A的每个元素a,含a的A的子集有29个,所以a对x的贡献为29,又|A|=10。所以x=1029.另解 A的k元子集共有个,k=1,2,10,因此,A的子集的元素个数之和为1029。6容斥原理。例6 由数字1,2,3组成n位数(n3),且在n位数中,1,2,3每一个至少出现1次,问:这样的n位数有多少个?解 用I表示由1,2,3组成的n位数集合,则|I|=3n,用A1,A2,A3分别表示不含1,不含2,不含3的由1,2,3组成的n位数的集合,则|A1|=|A2|=|A3|=2n,|A1A2|=|A2A3|=|A1A3|=1。|A1A2A3|=0。所以由容斥原理|A1A2A3|=32n-3.所以满足条件的n位数有|I|-|A1A2A3|=3n-32n+3个。7递推方法。例7 用1,2,3三个数字来构造n位数,但不允许有两个紧挨着的1出现在n位数中,问:能构造出多少个这样的n位数?解 设能构造an个符合要求的n位数,则a1=3,由乘法原理知a2=33-1=8.当n3时:1)如果n位数的第一个数字是2或3,那么这样的n位数有2an-1;2)如果n位数的第一个数字是1,那么第二位只能是2或3,这样的n位数有2an-2,所以an=2(an-1+an-2)(n3).这里数列an的特征方程为x2=2x+2,它的两根为x1=1+,x2=1-,故an=c1(1+)n+ c2(1+)n,由a1=3,a2=8得,所以8算两次。例8 m,n,rN+,证明: 证明 从n位太太与m位先生中选出r位的方法有种;另一方面,从这n+m人中选出k位太太与r-k位先生的方法有种,k=0,1,r。所以从这n+m人中选出r位的方法有种。综合两个方面,即得式。9母函数。例9 一副三色牌共有32张,红、黄、蓝各10张,编号为1,2,10,另有大、小王各一张,编号均为0。从这副牌中任取若干张牌,按如下规则计算分值:每张编号为k的牌计为2k分,若它们的分值之和为2004,则称这些牌为一个“好牌”组,求好牌组的个数。解 对于n1,2,2004,用an表示分值之和为n的牌组的数目,则an等于函数f(x)=(1+)2(1+)3(1+)3的展开式中xn的系数(约定|x|1),由于f(x)= (1+)(1+)(1+)3=3 =3。而02004211,所以an等于的展开式中xn的系数,又由于=(1+x2+x3+x2k+)1+2x+3x2+(2k+1)x2k+,所以x2k在展开式中的系数为a2k=1+3+5+(2k+1)=(k+1)2,k=1,2,从而,所求的“好牌”组的个数为a2004=10032=1006009.10组合数的性质。例10 证明:是奇数(k1).证明 =令i=pi(1ik),pi为奇数,则,它的分子、分母均为奇数,因是整数,所以它只能是若干奇数的积,即为奇数。例11 对n2,证明:证明 1)当n=2时,22=642;2)假设n=k时,有2k4k,当n=k+1时,因为又4,所以2k+1.所以结论对一切n2成立。11二项式定理的应用。例12 若nN, n2,求证:证明 首先其次因为,所以 2+得证。例13 证明:证明 首先,对于每个确定的k,等式左边的每一项都是两个组合数的乘积,其中是(1+x)n-k的展开式中xm-h的系数。是(1+y)k的展开式中yk的系数。从而就是(1+x)n-k(1+y)k的展开式中xm-hyh的系数。于是,就是展开式中xm-hyh的系数。另一方面,= =(xk-1+xk-2y+yk-1),上式中,xm-hyh项的系数恰为。所以12概率问题的解法。例14 如果某批产品中有a件次品和b件正品,采用有放回的抽样方式从中抽取n件产品,问:恰好有k件是次品的概率是多少?解 把k件产品进行编号,有放回抽n次,把可能的重复排列作为基本事件,总数为(a+b)n(即所有的可能结果)。设事件A表示取出的n件产品中恰好有k件是次品,则事件A所包含的基本事件总数为akbn-k,故所求的概率为p(A)=例15 将一枚硬币掷5次,正面朝上恰好一次的概率不为0,而且与正面朝上恰好两次的概率相同,求恰好三次正面朝上的概率。解 设每次抛硬币正面朝上的概率为p,则掷5次恰好有k次正面朝上的概率为(1-p)5-k(k=0,1,2,5),由题设,且0p1,化简得,所以恰好有3次正面朝上的概率为例16 甲、乙两个乒乓球运动员进行乒乓球比赛,已知每一局甲胜的概率为0.6,乙胜的概率为0.4,比赛时可以用三局二胜或五局三胜制,问:在哪一种比赛制度下,甲获胜的可能性大?解 (1)如果采用三局两胜制,则甲在下列两种情况下获胜:A12:0(甲净胜二局),A22:1(前二局甲一胜一负,第三局甲胜). p(A1)=0.60.6=0.36,p(A2)=0.60.40.6=0.288.因为A1与A2互斥,所以甲胜概率为p(A1+A2)=0.648.(2)如果采用五局三胜制,则甲在下列三种情况下获胜:B13:0(甲净胜3局),B23:1(前3局甲2胜1负,第四局甲胜),B33:2(前四局各胜2局,第五局甲胜)。因为B1,B2,B2互斥,所以甲胜概率为p(B1+B2+B3)=p(B1)+p(B2)+p(B3)=0.63+0.620.40.6+0.620.420.6=0.68256.由(1),(2)可知在五局三胜制下,甲获胜的可能性大。例17 有A,B两个口袋,A袋中有6张卡片,其中1张写有0,2张写有1,3张写有2;B袋中有7张卡片,其中4张写有0,1张写有1,2张写有2。从A袋中取出1张卡片,B袋中取2张卡片,共3张卡片。求:(1)取出3张卡片都写0的概率;(2)取出的3张卡片数字之积是4的概率;(3)取出的3张卡片数字之积的数学期望。解(1);(2);(3)记为取出的3张卡片的数字之积,则的分布为0248p所以13抽屉原理。例1 设整数n4,a1,a2,an是区间(0,2n)内n个不同的整数,证明:存在集合a1,a2,an的一个子集,它的所有元素之和能被2n整除。证明 (1)若na1,a2,an,则n个不同的数属于n-1个集合1,2n-1,2,2n-2,n-1,n+1。由抽屉原理知其中必存在两个数ai,aj(ij)属于同一集合,从而ai+aj=2n被2n整除;(2)若na1,a2,an,不妨设an=n,从a1,a2,an-1(n-13)中任意取3个数ai, aj, ak(ai,aj0)不被n整除,考虑n个数a1,a2,a1+a2,a1+a2+a3,a1+a2+an-1。)若这n个数中有一个被n整除,设此数等于kn,若k为偶数,则结论成立;若k为奇数,则加上an=n知结论成立。)若这n个数中没有一个被n整除,则它们除以n的余数只能取1,2,n-1这n-1个值,由抽屉原理知其中必有两个数除以n的余数相同,它们之差被n整除,而a2-a1不被n整除,故这个差必为ai, aj, ak-1中若干个数之和,同)可知结论成立。14极端原理。例2 在nn的方格表的每个小方格内写有一个非负整数,并且在某一行和某一列的交叉点处如果写有0,那么该行与该列所填的所有数之和不小于n。证明:表中所有数之和不小于。证明 计算各行的和、各列的和,这2n个和中必有最小的,不妨设第m行的和最小,记和为k,则该行中至少有n-k个0,这n-k个0所在的各列的和都不小于n-k,从而这n-k列的数的总和不小于(n-k)2,其余各列的数的总和不小于k2,从而表中所有数的总和不小于(n-k)2+k215.不变量原理。俗话说,变化的是现象,不变的是本质,某一事情反复地进行,寻找不变量是一种策略。例3 设正整数n是奇数,在黑板上写下数1,2,2n,然后取其中任意两个数a,b,擦去这两个数,并写上|a-b|。证明:最后留下的是一个奇数。证明 设S是黑板上所有数的和,开始时和数是S=1+2+2n=n(2n+1),这是一个奇数,因为|a-b|与a+b有相同的奇偶性,故整个变化过程中S的奇偶性不变,故最后结果为奇数。例4 数a1, a2,an中每一个是1或-1,并且有S=a1a2a3a4+ a2a3a4a5+ana1a2a3=0. 证明:4|n.证明 如果把a1, a2,an中任意一个ai换成-ai,因为有4个循环相邻的项都改变符号,S模4并不改变,开始时S=0,即S0,即S0(mod4)。经有限次变号可将每个ai都变成1,而始终有S0(mod4),从而有n0(mod4),所以4|n。16构造法。例5 是否存在一个无穷正整数数列a1,a2a3,使得对任意整数A,数列中仅有有限个素数。证明 存在。取an=(n!)3即可。当A=0时,an中没有素数;当|A|2时,若n|A|,则an+A均为|A|的倍数且大于|A|,不可能为素数;当A=1时,an1=(n!1)(n!)2n!+1,当3时均为合数。从而当A为整数时,(n!)3+A中只有有限个素数。例6 一个多面体共有偶数条棱,试证:可以在它的每条棱上标上一个箭头,使得对每个顶点,指向它的箭头数目是偶数。证明 首先任意给每条棱一个箭头,如果此时对每个顶点,指向它的箭头数均为偶数,则命题成立。若有某个顶点A,指向它的箭头数为奇数,则必存在另一个顶点B,指向它的箭头数也为奇数(因为棱总数为偶数),对于顶点A与B,总有一条由棱组成的“路径”连结它们,对该路径上的每条棱,改变它们箭头的方向,于是对于该路径上除A,B外的每个顶点,指向它的箭头数的奇偶性不变,而对顶点A,B,指向它的箭头数变成了偶数。如果这时仍有顶点,指向它的箭头数为奇数,那么重复上述做法,又可以减少两个这样的顶点,由于多面体顶点数有限,经过有限次调整,总能使和是对每个顶点,指向它的箭头数为偶数。命题成立。17染色法。*【常考】例7 能否在55方格表内找到一条线路,它由某格中心出发,经过每个方格恰好一次,再回到出发点,并且途中不经过任何方格的顶点?解 不可能。将方格表黑白相间染色,不妨设黑格为13个,白格为12个,如果能实现,因黑白格交替出现,黑白格数目应相等,得出矛盾,故不可能。18凸包的使用。给定平面点集A,能盖住A的最小的凸图形,称为A的凸包。例8 试证:任何不自交的五边形都位于它的某条边的同一侧。证明 五边形的凸五包是凸五边形、凸四边形或者是三角形,凸包的顶点中至少有3点是原五边形的顶点。五边形共有5个顶点,故3个顶点中必有两点是相邻顶点。连结这两点的边即为所求。19赋值方法。例9 由22的方格纸去掉一个方格余下的图形称为拐形,用这种拐形去覆盖57的方格板,每个拐形恰覆盖3个方格,可以重叠但不能超出方格板的边界,问:能否使方格板上每个方格被覆盖的层数都相同?说明理由。解 将57方格板的每一个小方格内填写数-2和1。如图18-1所示,每个拐形覆盖的三个数之和为非负。因而无论用多少个拐形覆盖多少次,盖住的所有数字之和都是非负的。另一方面,方格板上数字的总和为12(-2)+231=-1,当被覆盖K层时,盖住的数字之和等于-K,这表明不存在满足题中要求的覆盖。-21-21-21-21111111-21-21-21-21111111-21-21-21-220图论方法。例10 生产由六种颜色的纱线织成的双色布,在所生产的双色布中,每种颜色的纱线至少与其他三种颜色的纱线搭配过。证明:可以挑出三种不同的双色布,它们包含所有的颜色。证明 用点A1,A2,A3,A4,A5,A6表示六种颜色,若两种颜色的线搭配过,则在相应的两点之间连一条边。由已知,每个顶点至少连出三条边。命题等价于由这些边和点构成的图中有三条边两两不相邻(即无公共顶点)。因为每个顶点的次数3,所以可以找到两条边不相邻,设为A1A2,A3A4。(1)若A5与A6连有一条边,则A1A2,A3A4,A5A6对应的三种双色布满足要求。(2)若A5与A6之间没有边相连,不妨设A5和A1相连,A2与A3相连,若A4和A6相连,则A1A2,A3A4,A5A6对应的双色布满足要求;若A4与A6不相连,则A6与A1相连,A2与A3相连,A1A5,A2A6,A3A4对应的双色布满足要求。综上,命题得证。三、趋近高考【必懂】1.(2010广东卷理)2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 A. 36种 B. 12种 C. 18种 D. 48种【解析】分两类:若小张或小赵入选,则有选法;若小张、小赵都入选,则有选法,共有选法36种,选A. 2.(2009北京卷文)用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为 ( )A8B24C48D120【答案】C.w【解析】本题主要考查排列组合知识以及分步计数原理知识. 属于基础知识、基本运算的考查.2和4排在末位时,共有种排法,其余三位数从余下的四个数中任取三个有种排法,于是由分步计数原理,符合题意的偶数共有(个).故选C.3(2010北京卷理)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( ) A324 B328 C360 D648【答案】B【解析】本题主要考查排列组合知识以及分类计数原理和分步计数原理知识. 属于基础知识、基本运算的考查. 首先应考虑“0”是特殊元素,当0排在末位时,有(个), 当0不排在末位时,有(个), 于是由分类计数原理,得符合题意的偶数共有(个).故选B.4.(2009全国卷文)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有(A)6种 (B)12种 (C)24种 (D)30种 答案:C解析:本题考查分类与分步原理及组合公式的运用,可先求出所有两人各选修2门的种数=36,再求出两人所选两门都相同和都不同的种数均为=6,故只恰好有1门相同的选法有24种 。5.(2009全国卷理)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( D )(A)150种 (B)180种 (C)300种 (D)345种 解: 分两类(1) 甲组中选出一名女生有种选法; (2) 乙组中选出一名女生有种选法.故共有345种选法.选D6.(2010湖北卷理)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为 【答案】C【解析】用间接法解答:四名学生中有两名学生分在一个班的种数是,顺序有种,而甲乙被分在同一个班的有种,所以种数是7.(2010四川卷文)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 A. 60 B. 48 C. 42 D. 36【答案】B【解析】解法一、从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;则男生甲必须在A、B之间(若甲在A、B两端。则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在两端的要求)此时共有6212种排法(A左B右和A右B左)最后再在排好的三个元素中选出四个位置插入乙,所以,共有12448种不同排法。解法二;同解法一,从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;为使男生甲不在两端可分三类情况:第一类:女生A、B在两端,男生甲、乙在中间,共有=24种排法;第二类:“捆绑”A和男生乙在两端,则中间女生B和男生甲只有一种排法,此时共有12种排法第三类:女生B和男生乙在两端,同样中间“捆绑”A和男生甲也只有一种排法。此时共有12种排法 三类之和为24121248种。 8. (2009全国卷理)甲、乙两人从4门课程中各选修2门。则甲、乙所选的课程中至少有1门不相同的选法共有A. 6种 B. 12种 C. 30种 D. 36种解:用间接法即可.种. 故选C9.(2010辽宁卷理)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A)70种 (B) 80种 (C) 100种 (D)140种 【解析】直接法:一男两女,有C51C425630种,两男一女,有C52C4110440种,共计70种 间接法:任意选取C9384种,其中都是男医生有C5310种,都是女医生有C414种,于是符合条件的有8410470种.【答案】A10.(2009湖北卷文)从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有A.120种 B.96种 C.60种 D.48种【答案】C【解析】5人中选4人则有种,周五一人有种,周六两人则有,周日则有种,故共有=60种,故选C11.(2009湖南卷文)某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为【 B 】A14 B16 C20 D48解:由间接法得,故选B. 12.(2010全国卷文)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论