已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沁县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设集合S=|x|x1或x5,T=x|axa+8,且ST=R,则实数a的取值范围是( )A3a1B3a1Ca3或a1Da3或a12 下列给出的几个关系中:;,正确的有( )个A.个 B.个 C.个 D.个3 设P是椭圆+=1上一点,F1、F2是椭圆的焦点,若|PF1|等于4,则|PF2|等于( )A22B21C20D134 已知函数 f(x)的定义域为R,其导函数f(x)的图象如图所示,则对于任意x1,x2R( x1x2),下列结论正确的是( )f(x)0恒成立;(x1x2)f(x1)f(x2)0;(x1x2)f(x1)f(x2)0;ABCD5 将n2个正整数1、2、3、n2(n2)任意排成n行n列的数表对于某一个数表,计算某行或某列中的任意两个数a、b(ab)的比值,称这些比值中的最小值为这个数表的“特征值”当n=2时,数表的所有可能的“特征值”的最大值为( )ABC2D36 “互联网”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( )A10 B20 C30 D407 设集合是三角形的三边长,则所表示的平面区域是( ) A B C D8 如图,在等腰梯形ABCD中,AB=2DC=2,DAB=60,E为AB的中点,将ADE与BEC分别沿ED、EC向上折起,使A、B重合于点P,则PDCE三棱锥的外接球的体积为( )ABCD9 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )ABCD10设集合M=x|x1,N=x|xk,若MN,则k的取值范围是( )A(,1B1,+)C(1,+)D(,1)11如图,四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,D为四面体OABC外一点给出下列命题不存在点D,使四面体ABCD有三个面是直角三角形不存在点D,使四面体ABCD是正三棱锥存在点D,使CD与AB垂直并且相等存在无数个点D,使点O在四面体ABCD的外接球面上其中真命题的序号是()ABCD12定义运算,例如若已知,则=( )ABCD二、填空题13如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15方向,这时船与灯塔间的距离为km14在中,已知,则此三角形的最大内角的度数等于_.15,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,若的内切圆半径与外接圆半径之比为,则该双曲线的离心率为_.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力16若数列满足,则数列的通项公式为 .17如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是 18利用计算机产生1到6之间取整数值的随机数a和b,在a+b为偶数的条件下,|ab|2发生的概率是三、解答题19(本小题满分13分)在四棱锥中,底面是梯形,为的中点()在棱上确定一点,使得平面;()若,求三棱锥的体积20如图,M、N是焦点为F的抛物线y2=2px(p0)上两个不同的点,且线段MN中点A的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围21斜率为2的直线l经过抛物线的y2=8x的焦点,且与抛物线相交于A,B两点,求线段AB的长22(本题满分14分)在中,角,所对的边分别为,已知(1)求角的大小; (2)若,求的取值范围【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力23解不等式|2x1|x|+1 24(本小题满分12分)的内角所对的边分别为,垂直.(1)求的值;(2)若,求的面积的最大值.沁县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:S=|x|x1或x5,T=x|axa+8,且ST=R,解得:3a1故选:A2 【答案】C【解析】试题分析:由题意得,根据集合之间的关系可知:和是正确的,故选C.考点:集合间的关系.3 【答案】A【解析】解:P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,|PF2|=213|PF1|=264=22故选:A【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用4 【答案】 D【解析】解:由导函数的图象可知,导函数f(x)的图象在x轴下方,即f(x)0,故原函数为减函数,并且是,递减的速度是先快后慢所以f(x)的图象如图所示f(x)0恒成立,没有依据,故不正确;表示(x1x2)与f(x1)f(x2)异号,即f(x)为减函数故正确;表示(x1x2)与f(x1)f(x2)同号,即f(x)为增函数故不正确,左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故不正确,正确,综上,正确的结论为故选D5 【答案】B【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,当1、2同行或同列时,这个数表的“特征值”为;当1、3同行或同列时,这个数表的特征值分别为或;当1、4同行或同列时,这个数表的“特征值”为或,故这些可能的“特征值”的最大值为故选:B【点评】题考查类比推理和归纳推理,属基础题6 【答案】B【解析】试题分析:设从青年人抽取的人数为,故选B考点:分层抽样7 【答案】A【解析】考点:二元一次不等式所表示的平面区域.8 【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题9 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有46=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题10【答案】B【解析】解:M=x|x1,N=x|xk,若MN,则k1k的取值范围是1,+)故选:B【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题11【答案】D【解析】【分析】对于可构造四棱锥CABD与四面体OABC一样进行判定;对于,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥;对于取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,对于先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r,可判定的真假【解答】解:四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可存在无数个点D,使点O在四面体ABCD的外接球面上,故正确故选D12【答案】D【解析】解:由新定义可得, =故选:D【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题二、填空题13【答案】 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=海里,则这时船与灯塔的距离为海里故答案为14【答案】【解析】考点:解三角形【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据,根据正弦定理,可设,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键15【答案】【解析】16【答案】 【解析】【解析】;故17【答案】 【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高由于此三角形的高为,故圆锥的高为此圆锥的体积为=故答案为【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”三视图是新课标的新增内容,在以后的高考中有加强的可能18【答案】 【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a和b,基本事件的总个数是66=36,即(a,b)的情况有36种,事件“a+b为偶数”包含基本事件:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个,“在a+b为偶数的条件下,|ab|2”包含基本事件:(1,5),(2,6),(5,1),(6,2)共4个,故在a+b为偶数的条件下,|ab|2发生的概率是P=故答案为:【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键三、解答题19【答案】(本小题满分13分)解:()当为的中点时,平面 (1分)连结、,那么, , (3分)又平面, 平面,平面 (5分)()设为的中点,连结、, 在直角三角形中,, 又,,,平面 (10分),三棱锥的体积 (13分)20【答案】 【解析】解:(1)设M(x1,y1),N(x2,y2),则x1+x2=8p,|MF|=x1+,|NF|=x2+,|MF|+|NF|=x1+x2+p=8;(2)p=2时,y2=4x,若直线MN斜率不存在,则B(3,0);若直线MN斜率存在,设A(3,t)(t0),M(x1,y1),N(x2,y2),则代入利用点差法,可得y12y22=4(x1x2)kMN=,直线MN的方程为yt=(x3),B的横坐标为x=3,直线MN代入y2=4x,可得y22ty+2t212=00可得0t212,x=3(3,3),点B横坐标的取值范围是(3,3)【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题21【答案】 【解析】解:设直线l的倾斜解为,则l与y轴的夹角=90,cot=tan=2,sin=,|AB|=40线段AB的长为40【点评】本题考查抛物线的焦点弦的求法,解题时要注意公式|AB|=的灵活运用22【答案】(1);(2).【解析】23【答案】 【解析】解:根据题意,对x分3种情况讨论:当x0时,原不等式可化为2x+1x+1,解得x0,又x0,则x不存在,此时,不等式的解集为当时,原不等式可化为2x+1x+1,解得x0,又,此时其解集为x|当时,原不等式可化为2x1x+1,解得,又由,此时其解集为x|,x| x| =x|0x2;综上,原不等式的解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021年超市促销方案5篇范文模板
- 石河子大学《食品物性学》2022-2023学年第一学期期末试卷
- 石河子大学《结构力学二》2023-2024学年第一学期期末试卷
- 石河子大学《简明新疆地方史教程》2022-2023学年第一学期期末试卷
- 石河子大学《风景画表现》2021-2022学年第一学期期末试卷
- 沈阳理工大学《自动武器原理与构造》2023-2024学年第一学期期末试卷
- 沈阳理工大学《交互设计》2023-2024学年第一学期期末试卷
- 2018年四川内江中考满分作文《我心中的英雄》12
- 沈阳理工大学《电力电子技术》2023-2024学年期末试卷
- 广州 存量房交易合同 范例
- 《收音机的组装》课件
- 六年级【科学(湘科版)】保持生态平衡-教学课件
- 第5.3课《联系生活实际弘扬工匠精神》(课件)-【中职专用】高二语文同步课件(高教版2023·职业模块)
- 《初中语文教材解析》
- 健康管理的四大关键饮食、运动、休息、心理
- 住院医师规范化培训临床操作技能床旁教学指南(2021年版)全面解读
- 教学查房-胃癌
- 幼儿园大班《种植》教案分享带动画
- 2023超星尔雅-大学生创新基础-冯林全部答案
- 赵珍珠《商业银行-金融企业会计》第二版课后参考答案 (第二到十一章)
- 大班科学《红薯现形记》课件
评论
0/150
提交评论