已阅读5页,还剩75页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
客户经理与数理知识 银行业员工培训教程选编之五 1 开场白:从“数”中自又黄金屋谈 起 华尔街 黎 彦 修 2 授课目录 u客户经理素质要求 u10道数理习题热身 u数理趣味习题分析 u10道金融习题案例 u处理业务差错技巧 3 授课方式方法 前十题每人闭卷解答 限时5分钟。不记名。 试卷收后,由各组推 举一人进行板书解答 。 授课老师助手阅卷。 教师分析试卷。 各组解答后10题。 金融习题案例分析。 4 客户经理素质要求 在银行营销中,客户经理几乎每天都要与 大量的的数字、数据打交道。比如利率、 汇率、价格、成本、费用、毛利、净利润 等等的预算与估算。这些都要求客户经理 具备一定的数理逻辑思维能力,保持对数 字、数据的敏感性,有助于客户经理做出 快速而正确的决策。 5 格林斯潘的数字人生 天才来自勤奋 聪明源自思考 数字必须精准 人生完美追求 6 10道数理习题热身 独立完成 不署姓名 时间八分 答毕交卷 7 数理趣味习题分析 子曰: 知之为知之,不 知为不知。是知也。 今人曰: 似是而非;似会 不会;似懂非懂;似 知不知。学之谬也。 8 案例一: 例:一个产品先提价10%,再降价 10%,结 果变动后的价格将比原来的价格? 1、高 2、低 3、不变。 9 案例二 例:一个产品如果先降价10%,再提价10% ,结果又会怎么样? 1、高 2、低 3、不变。 10 答案: 案例一、案例二均比原值低。 先提后降结果:10(1+10%)(1-10%)=9.9 先降后提结果:10(1-10%)(1+10%)=9.9 殊途同归,都是9.9 9.9a-b 当ab0 时 12 案例三 某先生做股票生意。一日以10元买入1000 股股票;后又以12元卖出;再后又以14元 买入;现又以16元卖出。 该先生是赔是赚?(如不计各项费用) 请选择: 1、-4000;2、-2000;3、0; 4、+2000;5、+4000 13 股票买入卖出示意图 14 答案: 赚4000元 15 知识要点 数轴概念; 参照概念; 确定正方向概念。 16 案例四 几个人拎着水桶在一个水龙头前面排队接 水,水桶有大有小。他们应该怎样排队, 才能使得总的排队时间最短?这是一个寻 求“最优化”的题目,目标是节省总的排 队时间,达到最优。答案: 1、大桶在先; 2、小桶在先; 3、大小桶均可。 17 答案: 小桶在先。 提示: 例如:小桶5分钟;大桶10分钟。 1、小桶在先:5+15=20 2、大桶在先:10+15=25 18 案例五 某图书大厦优惠购书卡。称:购万元以上书 卡,1、多给优惠10%;2、或打九折。 选择: 1、方法一合算; 2、方法二合算; 3、方法一、二相同。 19 答案: 优惠比例: 方法一:11000/10000=1.1 方法二:10000/9000=1.111 方法二合算。 20 案例六 1+2+3+4+100=? 1、5050 2、5150 3、5500 4、5052 21 答案 5050 等差数列 公差d=1 通项公式 an=a1+(n-1)d 前n项和 sn=(a1+an)n/2 =na1+n(n-1)d/2 s100=(1+100)x100/2 =5050 22 案例七 2+4+8+16+1024=? 答: 1、2406 2、2046 3、2028 4、2052 23 知识要点 等比数列 公比q 通项an=a1qn-1 Sn=a1+a1q+aq2+a1qn-1 =(1-q)/(1-q)(a1+a1q+a1q2+a1qn-1) =(1/(1-q))(a1-a1q+a1q-a1q2-a1qn-1+a1qn-1+a1qn) =(1/(1-q))(a1-a1qn) 24 答案 答案:2046 公比 :q=2 通项公式:an=a1qn-1 前n项和 Sn=(a1-anq)/(1-q)=a1(1-qn)/(1-q) =a1(qn-1)/(q-1) 2+4+8+1024 =21+22+23+210 =2(210-1)/(2-1) =2(1024-1) =2046 25 案例八 一江湖有1000亩。某日发现有1亩的水藻。 如果水藻以每日2倍的速度繁衍。多少日后 江湖水面被全部水藻覆盖。 1、10天; 2、20天; 3、50天。 26 答案 10天 知识要点 20;21;22210 1 ;2 ;41024 27 案例九 某出纳员收了五笔款。结帐后发现现金比帐目少 了144元。现查帐目: 1、171; 2、160; 3、372; 4、900; 5、540。 现在请问以上五笔业务那笔最有可能发生错误? 28 答案 2、160 有可能将160元,误收16元,差144元 144/9=16 29 案例十 法国数学家刘卡在一次国际会议期间出了一个小题目作为余兴节目。 每天中午有一艘轮船从巴黎的勒纳河口开往纽约,在每天同一时刻该 公司的另一艘轮船从纽约开往巴黎。行驶时间假设整整7天,而且是 匀速行驶在同一航道,天气晴好,彼此近距离看得见,若今天中午发 船,在此航程中,将会遇到几只同一个公司的轮船从对面开来? 1、7; 2、8; 3、13; 4、14; 5、15; 6、20; 7、21; 8、22 巴黎 纽约 30 答案:15艘 0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 巴黎 纽约 31 数理习题分析(一) 习 题 12345678910人 总 数 正 确 3028373435323840352843 比 例 70658679817488938165 32 数理习题分析(二) 分 数 100 908070605040302010 平 均 人 数 3 718105 78.4 比 例 711.6 16.3 23.2 41.9 33 金融习题案例分析 百姓云: 吃不穷喝不穷, 算计不到就受穷。 34 实际利率的概念和公式 a1=a0+i=1+i 单利的定义: a1=1+it 复利的定义: a1=(1+i)t 35 利息和利率的概念 In=an-an-1 对整数n1 In=(an-an-1)/an-1 36 单利的性质 每一度量期产生的利息均为常数i; in关于n单调递减。 in=(a(n)-a(n-1)/a(n-1) =(1+in)-(1+i(n-1))/(1+i(n-1)) =i/(1+i(n-1)) 37 复利的性质 不同时期产生的利息不是常数; 利息是关于n单调递增。 in=a(n)-a(n-1) =(1+i)n-(1+i)n-1 =i(1+i)n-1 =ia(n-1) 38 单利与复利比较 in(利息) in(利率) 单利 常数 单调递减 n1 复利 单调递增 n1 常数 39 指数与对数 ab=N LogaN=b alogaN=N Logaa=1 Loga1=0 Logab=Logcb/Logca 换底公式 Lnb=lnb/lne 自然对数 40 使投资资本翻倍的时间长度 利率% 72律 准确值 4 5 6 7 8 10 12 18 18 14 12 10.29 9 7.2 6 4 17.67 14.21 11.9 10.24 9.01 6.12 4.19 7.27 41 投资翻倍的72律 an=a1(1+i)t 令:an=2 a1=1 2=(1+i)t t=ln2/ln(1+i) =(ln2/i)x(i/ln(1+i) 以:i=8%代入 ln2=0.69315 i/ln(1+i)=8%/ln1.08=1.0395 1.0395x0.69315=0.7205 t=0.72/i=72/100i 42 案例十一 赵先生到银行存入1000元,第一年末他的 存折上的余额为1050元,第二年末他存折 的余额为1100元。问: 1、第一年和第二年的实际利率相等; 2、第一年比第二年的实际利率大; 3、第一年比第二年的实际利率小。 43 答案 2、第一年比第二年的实际利率大 i1=50/1000=5% i2=50/1050=4.762% I1i2 44 案例十二 钱女士到银行存入1000元,三年期,复利 10%,每年计一次息。问:第三年当期应给 他计息多少。 1、300元; 2、100元; 3、331元; 4、120元; 5、121元。 45 答案 121元 in=a1x(1+i)n-a1x(1+i)n-1 I3=1000x(1+0.1)3-1000x(1+0.1)2 =1000x1.331-1000x1.21 =121 46 案例十三 假设银行以单利计息,年息为6%,孙先生 每月存入同样数目的800元钱。一年后他获 得的累积值是多少? 47 答案 a1=a0(1+i) a2=a0(1+2xi) an=a0(1+nxi) sn=12a0+a0(1+2+12)i =12a0+800x12x13/2x0.005 =12x800+800x6x13x0.005 =9912 48 案例十四 假设银行以复利计息,年息为6%,李先生 每月存入同样数目的800元钱。一年后他获 得的累积值是多少? 49 答案 a1=a0(1+i) a2=a0(1+i)2 an=a0(1+i)n sn=a1+a2+a12 = a0(1+i)+a0(1+i)2+a0(1+i)12 =a0(1.005+1.0052+1.00512) =800x(1.005(1.00512-1)/0.005) =9917.79 50 案例十五 周女士存入银行15000元,三年后银行付其 20000元。银行存款的年复利是多少? 51 答案 an=a1(1+i)3 i=(an/a1)1/3-1 =(20000/15000)1/3-1 =(4/3)1/3-1 =1.100642-1 =10.06% 52 案例十六 假设银行以复利计息,年息为6%,一年后 获得的累积值是10000元?吴先生每月存入 多少同样数目的钱? 53 答案 a1=a0(1+i) a2=a0(1+i)2 an=a0(1+i)n Sn=a0(1+i)+(1+i)2+(1+i)12) a0=sn/(1.005(1.00512-1)/(1.005-1) =10000x0.005/1.005x(1.00512-1) =806.63 54 案例十七 郑小姐投资的一个项目需要两次投入,现 在投资30000元,2年后再投资60000元,4 年后可以回收240000元。如果要进行资本 预算从而决定采用什么样的方式融资,请 问她这项投资的实际回报率有多少? 55 答案 首先建立价值方程: 30000(1+i)4+60000(1+i)2=240000 (1+i)4+(1+i)2=8 (1+i)4+(1+i)2-8=0 解一:(1+I)2=2 解二: (1+i)2=-4 (1+i)20,因此,解二舍去。 (1+i)=21/2 i=21/2-1 =1.412-1 =41.2% 56 案例十八 王先生认购元基金。基金面值 元。认购费率为。如不计利息。王 先生可认购多少分额? 57 答案 (认购金额手续费)认购费率手续费 手续费认购金额认购费率(认购费率 ) (.) . 认购份额(认购金额手续费)基金面值 (.) . 58 案例十九 香港的蒋先生在1999年初拥有当年发行的债券500 万元,票面利率为8.35%。蒋先生将债券市场与银 行利息进行套利操作,使得债券收益大为提高。 蒋先生将手中500万债券与证券交易商做回购协议 ,交易利率为5875%。融资500万元。由于当时债 券市场情况一般是平价或溢价发行。所以蒋先生 将融资获得的500万元存入银行,定期存款利率为 7.75%。 问:一年后,蒋先生净获利多少。采用套利操作 多赚了多少? 59 答案 一年存款利息: 5000000x7.75%=387500 国债利息: 5000000x8.35%=417500 支付交易商成本: 5000000x5.875%=293750 蒋先生净获利 511250元 多赚了93750元 ;提高收益率2%。 60 案例二十 北京市退休员工退休金的计算方法 退休员工退休金包括: 1、个人帐户养老金; 2、过渡性养老金; 3、基础性养老金; 4、综合性补贴 61 个人帐户养老金的计算 提示:当年个人和单位活期利息的计算 1月: a1+ix(12) 2月: a2+ix(12-1) 3月: a3+ix(12-2) 12月: a12+ix(12-11) 全年:s12=12xa1+ix(12+11+1) =12xa1+ix(12+1)x12/2 62 处理业务差错技巧 哲学家罗素说:“数学,如果正确地看她 ,不但拥有真理,而且也具有至高的美。 数学提供了一种精确简洁通用的科学语言 ,数学语言正是以她的结构与内容上的完 美给人以美的感受。” 63 巧 用 数 学 方 法 查 找 数 字 差 错 在我们工作中,尤其是从事会计、出纳、 统计等涉及到数字时,往往由于一时疏忽 ,出现纰漏,或是少收;或是多付;或是 将数位看错;或是将数字颠倒;或是笔误 等等。造成总分不符等差错。查找起来很 困难。本文就数字颠倒、数位写错等,结 合工作经验,用数学表格形式,介绍给大 家,供参考。 64 大小数差错的查找(一) 如:我们将30误为3,在汇总时发现少27, 如将27除以9,商为3。(以下,我们可将 原数称作大数,误为的数称作小数。)这 里,我们发现一个规律。27除以9商3,商 数恰好等于小数3。如果扩大10倍正好等于 大数30。 为了方便大小数差错的查找,我们制 成大小数差错速查表。 65 大小数差错的查找(二) 实际应用,如:在工作中,我们如果发现 一差错为27,以9除之,则商3,在序号3中 找到大数30,小数3。如果是多了27,则可 能是将3误为30;如果是少了27,则可能是 将30误为3。 再如:140误为14,其差126,126除以 9,商14。在序号14中找到大数140,小数 14。正是140与14之差错。 其余类推。 66 大小数差错速查表 序 号 大小差商序 号 大小差商序 号 大小差商 11019111 110119911212102118921 220218212 1201210812222202219822 330327313 1301311713232302320723 440436414 1401412614242402421624 550545515 1501513515252502522525 660654616 1601614416262602623426 770763717 1701715317272702724327 880872818 1801816218282802825228 990981919 1901917119292902926129 10 100 10901020 2002018020303003027030 67 大小数差错速查表(接上表) 序 号 大小差商序 号 大小差商序 号 大小差商 31 310 31 279 3141 410 41 369 4151 510 51 459 51 32 320 32 288 3242 420 42 378 4252 520 52 468 52 33 330 33 297 3343 430 43 387 4353 530 53 477 53 34 340 34 306 3444 440 44 396 4454 540 54 486 54 35 350 35 315 3545 450 45 405 4555 550 55 495 55 36 360 36 324 3646 460 46 414 4656 560 56 504 56 37 370 37 333 3747 470 47 423 4757 570 57 513 57 38 380 38 342 3848 480 48 432 4858 580 58 522 58 39 390 39 351 3949 490 49 441 4959 590 59 531 59 40 400 40 360 4050 500 50 450 5060 600 60 540 60 68 正反数差错的查找(一) 如:我们误将27写成72, 在汇总时发现多 45, 如将45除以9, 商为5。这里,我们可 将原数称作为正数,误写的数称作反数。 本例中是反数比正数大45。这里我们发现 :45除以9,商5恰好等于27的个位数字与 十位数字之差,也等于5。而且,我们还发 现,如:16误为61;38误为83;49误为94 。它们的反数与正数之差均为45,差45被9 除,商为5,且它们的个位数与十位数之差 ,均为5。 69 正反数差错的查找(二) 由此,我们发现正反数差错是有规律可循的。如 在出现45的差错时,有可能是个位数与十位数差 是5的数。如:16误为61;27误为72;38误为83; 49误为94。我们可以从中找出差错来。 再如出现差是72的差错时,以9除之,商为8 ,则这是个个位与十位差8的数,当多72时,是19 误为91,当少72时,是91误为19。 其余类推。 70 正反数差错的查找(三) 我们下面制作正反数差错速查表。如何利用 这个速查表呢,在这里我们向大家做简单的介绍 。 如果我们在工作中出现27的差错,则我们用27除 以9,商3,在序号3中查找,可以找到14与41; 25与52;36与63;47与74;58与85;69与96等 6组数。如果是多了,则是将小的数误为大数,反 之,则是将大数误为小的数。这样,我们就可以 缩小查找的范围,在以上6组数中查找所出的差错 。 71 正反数差错速查表 序 号 正 反 差 商正 反 差 商正 反 差 商正 反 差 商 1 122191233291344391455491 2 1331182244218235531824664182 3 1441273255227336632734774273 4 1551364266236437733644884364 5 1661455277245538834554994455 6 177154628825463993546 7 18816372992637 8 1991728 72 正反数差错速查表(接上表) 序 号 正 反 差 商正 反 差 商正 反 差 商正 反 差 商 1 566591677691788791899891 2 577518268861827997182 3 58852736996273 4 5995364 5 6 7 8 73 大小数和正反数差错混合查找 由一、二,我们看到大小数和正反数差错有规律 可循,且均与9有倍数关系。由一、二差错为 “27”的例中,我们看到如是大小差错则是3或30 之差;如是正反数差错可能是14与41;25与52; 36与63;47与74;58与85;69与96。六组数之一 的差错。 由此,我们可以推而广之,在工作中,如出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 微笑服务的心得体会5篇
- 电力竞赛心得体会
- 2022科学新课标的心得体会(8篇)
- 青海省海北藏族自治州(2024年-2025年小学五年级语文)统编版开学考试(下学期)试卷及答案
- 高考文综区域地理教案 东亚精讲精练 内含考向指导 内容精析 典例剖析 高考链接
- 上海市市辖区(2024年-2025年小学五年级语文)人教版期中考试(下学期)试卷及答案
- 四年级数学(小数加减运算)计算题专项练习与答案汇编
- 高中化学《弱电解质的电离》说课稿
- s版二年级语文下册全册教案
- 湘教版小学美术三年级上册全册教案
- 部编版三年级上册语文 期中检测卷(一)
- 脚手架工程危险源辨识及对策措施
- GB∕T 39402-2020 面向人机协作的工业机器人设计规范
- 图灵机与现代计算机PPT教案
- 钢筋策划思路指引
- 皮肤科——粉刺痤疮
- T∕ACSC 01-2022 辅助生殖医学中心建设标准(高清最新版)
- 75t汽车吊起重性能表
- 中国围棋竞赛规则(2002)
- 光伏系统的安装工程监理实施细则
- 标准作业组合票--自动生成
评论
0/150
提交评论