




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
永靖县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如图所示,在平行六面体ABCDA1B1C1D1中,点E为上底面对角线A1C1的中点,若=+x+y,则( ) Ax=Bx=Cx=Dx=2 设集合A1,2,3,B4,5,Mx|xab,aA,bB,则M中元素的个数为()。A3B4C5D63 在区间上恒正,则的取值范围为( )A B C D以上都不对4 已知命题且是单调增函数;命题,.则下列命题为真命题的是( )A B C. D5 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A BC. D6 已知A,B是以O为圆心的单位圆上的动点,且|=,则=( )A1B1CD7 已知双曲线(a0,b0)的右焦点F,直线x=与其渐近线交于A,B两点,且ABF为钝角三角形,则双曲线离心率的取值范围是( )ABCD8 函数y=+的定义域是( )Ax|x1Bx|x1且x3Cx|x1且x3Dx|x1且x39 已知ab0,那么下列不等式成立的是( )AabBa+cb+cC(a)2(b)2D10双曲线的焦点与椭圆的焦点重合,则m的值等于( )A12B20CD11已知,其中i为虚数单位,则a+b=( )A1B1C2D312设集合,则( )A. B. C. D. 【命题意图】本题主要考查集合的概念与运算,属容易题.二、填空题13在ABC中,若角A为锐角,且=(2,3),=(3,m),则实数m的取值范围是14已知定义域为(0,+)的函数f(x)满足:(1)对任意x(0,+),恒有f(2x)=2f(x)成立;(2)当x(1,2时,f(x)=2x给出如下结论:对任意mZ,有f(2m)=0;函数f(x)的值域为0,+);存在nZ,使得f(2n+1)=9;“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在kZ,使得(a,b)(2k,2k+1)”;其中所有正确结论的序号是15若函数y=ln(2x)为奇函数,则a=16已知集合,则AB 17给出下列四个命题:函数f(x)=12sin2的最小正周期为2;“x24x5=0”的一个必要不充分条件是“x=5”;命题p:xR,tanx=1;命题q:xR,x2x+10,则命题“p(q)”是假命题;函数f(x)=x33x2+1在点(1,f(1)处的切线方程为3x+y2=0其中正确命题的序号是18在ABC中,已知=2,b=2a,那么cosB的值是三、解答题19 (本题满分12分)在如图所示的几何体中,四边形为矩形,直线平面,点在棱上.(1)求证:;(2)若是的中点,求异面直线与所成角的余弦值;(3)若,求二面角的余弦值.20(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)21已知函数f(x)=ax(a0且a1)的图象经过点(2,)(1)求a的值;(2)比较f(2)与f(b2+2)的大小;(3)求函数f(x)=a(x0)的值域22(本小题满分12分)在中,内角的对边为,已知.(I)求角的值;(II)若,且的面积取值范围为,求的取值范围【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力23(本题满分14分)在中,角,所对的边分别为,已知(1)求角的大小; (2)若,求的取值范围【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力24(本题满分12分)如图1在直角三角形ABC中,A=90,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将CDE沿DE折起,使点A在平面CDE内的射影恰好为M(I)求AM的长;()求面DCE与面BCE夹角的余弦值永靖县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:根据题意,得;=+(+)=+=+,又=+x+y,x=,y=,故选:A【点评】本题考查了空间向量的应用问题,是基础题目2 【答案】B【解析】由题意知xab,aA,bB,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B3 【答案】C【解析】试题分析:由题意得,根据一次函数的单调性可知,函数在区间上恒正,则,即,解得,故选C.考点:函数的单调性的应用.4 【答案】D 【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.5 【答案】A【解析】试题分析:利用余弦定理求出正方形面积;利用三角形知识得出四个等腰三角形面积;故八边形面积.故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式求出个三角形的面积;接下来利用余弦定理可求出正方形的边长的平方,进而得到正方形的面积,最后得到答案.6 【答案】B【解析】解:由A,B是以O为圆心的单位圆上的动点,且|=,即有|2+|2=|2,可得OAB为等腰直角三角形,则,的夹角为45,即有=|cos45=1=1故选:B【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键7 【答案】D【解析】解:函数f(x)=(x3)ex,f(x)=ex+(x3)ex=(x2)ex,令f(x)0,即(x2)ex0,x20,解得x2,函数f(x)的单调递增区间是(2,+)故选:D【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目8 【答案】D【解析】解:由题意得:,解得:x1或x3,故选:D【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题9 【答案】C【解析】解:ab0,ab0,(a)2(b)2,故选C【点评】本题主要考查不等式的基本性质的应用,属于基础题10【答案】A【解析】解:椭圆的焦点为(4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12故选:A11【答案】B【解析】解:由得a+2i=bi1,所以由复数相等的意义知a=1,b=2,所以a+b=1另解:由得ai+2=b+i(a,bR),则a=1,b=2,a+b=1故选B【点评】本题考查复数相等的意义、复数的基本运算,是基础题12【答案】B【解析】易知,所以,故选B.二、填空题13【答案】 【解析】解:由于角A为锐角,且不共线,6+3m0且2m9,解得m2且m实数m的取值范围是故答案为:【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题14【答案】 【解析】解:x(1,2时,f(x)=2xf(2)=0f(1)=f(2)=0f(2x)=2f(x),f(2kx)=2kf(x)f(2m)=f(22m1)=2f(2m1)=2m1f(2)=0,故正确;设x(2,4时,则x(1,2,f(x)=2f()=4x0若x(4,8时,则x(2,4,f(x)=2f()=8x0一般地当x(2m,2m+1),则(1,2,f(x)=2m+1x0,从而f(x)0,+),故正确;由知当x(2m,2m+1),f(x)=2m+1x0,f(2n+1)=2n+12n1=2n1,假设存在n使f(2n+1)=9,即2n1=9,2n=10,nZ,2n=10不成立,故错误;由知当x(2k,2k+1)时,f(x)=2k+1x单调递减,为减函数,若(a,b)(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确故答案为:15【答案】4 【解析】解:函数y=ln(2x)为奇函数,可得f(x)=f(x),ln(+2x)=ln(2x)ln(+2x)=ln()=ln()可得1+ax24x2=1,解得a=4故答案为:416【答案】11,3【解析】试题分析:AB11,3考点:集合运算【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解3.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍17【答案】 【解析】解:,T=2,故正确;当x=5时,有x24x5=0,但当x24x5=0时,不能推出x一定等于5,故“x=5”是“x24x5=0”成立的充分不必要条件,故错误;易知命题p为真,因为0,故命题q为真,所以p(q)为假命题,故正确;f(x)=3x26x,f(1)=3,在点(1,f(1)的切线方程为y(1)=3(x1),即3x+y2=0,故正确综上,正确的命题为故答案为18【答案】 【解析】解: =2,由正弦定理可得:,即c=2ab=2a,=cosB=故答案为:【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题三、解答题19【答案】【解析】【命题意图】本题考查了线面垂直、线线垂直等位置关系及线线角、二面角的度量,突出考查逻辑推理能力及利用坐标系解决空间角问题,属中等难度.(3)因为平面,所以平面的一个法向量.由知为的三等分点且此时.在平面中,.所以平面的一个法向量.10分所以,又因为二面角的大小为锐角,所以该二面角的余弦值为.12分20【答案】【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题. 21【答案】 【解析】解:(1)f(x)=ax(a0且a1)的图象经过点(2,),a2=,a=(2)f(x)=()x在R上单调递减,又2b2+2,f(2)f(b2+2),(3)x0,x22x1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年西藏自治区拉萨市八校高三考前热身物理试卷含解析
- 河北省承德二中2025届高三第四次模拟考试物理试卷含解析
- 全国版2024年高考地理二轮复习“高考11个选择题”提速练八含解析
- 安溪初中期末考试卷及答案
- 安徽高一分班试卷及答案
- s版重点小升初语文测试卷及答案
- pep三年级下册试卷及答案
- 劳务合同标准文本版一
- 劳务合作合同标准文本
- 电解起重机企业ESG实践与创新战略研究报告
- 高一年级总结暨表彰大会校长讲话希望同学们以本次考试为起点用行动来践行自己对家长的承诺
- 知识产权合规管理体系解读
- 专题12:宾语从句 -2023年中考英语考试研究(解析版)(上海专用)
- GB/T 2624.5-2024用安装在圆形截面管道中的差压装置测量满管流体流量第5部分:锥形装置
- 消防施工方案范本完整版
- 2024年大学英语四级单词表不含高中
- 食品安全学化学物质危害
- 四川省成都市武侯区北京第二外国语学院成都附属中学2024-2025学年八年级上学期期中考试英语试题(含答案无听力原文及音频)
- 【MOOC】老子的人生智慧-东北大学 中国大学慕课MOOC答案
- 售后服务组织架构及人员岗位职责
- 智能交通监控系统运维服务方案(纯方案-)
评论
0/150
提交评论