已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Digital Signal Processing Review Questions Apr 15, 2012 pp. 73, Q1.1 Given the sequences shown, write them in terms of unit impulses -0.5 1 0.5 1 -0.8 x n n Ans: 0.5 1 0.5 120.8 3 x nnn nnn = + + pp.74 Q1.2 Compute the following integrals a. (1) t etdt d. 32 (1) ( )tttt dt + + e. 2 cos (20.1 ) (1)ttdt + Ans a: 1 (1) t etdte = Ans. d. 32 (1) ( )1tttt dt + += Ans. e. 22 2 cos (20.1 ) (1)cos (20.1 ) cos (0.1 ) ttdt += = pp75 Q1.7 Given the discrete time sinusoid 3cos(0.10.2 )x nn=, can you determine another sinusoid with digital frequency 02 Ans: Formula ( ), 1( ), n n z x na u nX zza za z x na unX zza za = = = ( )( ) 0.5 j j j z e e XX z e = = pp82. Q1.42 You know that ( )sin ( )FT rect tc F=. Determine the following: i. (2 ) n FTrect tn = Ans: 000000 ()() () kk FTx tkTFXkFFkF = , or 00 00 ( )( ) TF FT rep x tF comb XF= ,where 00 ( )( )XFFT x t= 0 0 (2 )( ) T n FTrect tnFT rep x t = = ,where 0 2T = and 0( ) ( )x trect t= Therefore, 00 000 ( )( ) TF FT rep x tF comb XF= , where 00 1/FT= and 00 ( )( )( )sin ( )XFFT x tFT rect tc F= 00 000 1 ()sin () () 1 sin ( ) () 222 kk k kk FTx tkTcF TTT kk cF = = Chapter 2. 2.1 Consider a sinusoidal signal ( )3cos(10000.1 )x tt=+that is sampled at a frequency 2 s F =kHz (a). determine an expression for the sampled sequence () s x nx nT=, and determine its discrete time Fourier transform ( ) XDTFT x n= (b). determine ( ) ( )X FFT x t= (c). Re-compute ( )X from ( )X F, and verify that you obtain the same expression as in (a) Ans: a) 0 3cos(10000.1 )3cos(0.1 ) s x nnTn=+=+ where 0 1000 s T= Using the formula given in page 53, we can get 00 ( )3()3() jj Xee =+ Ans. b). Using the formula given in page 65, we can get the Fourier transform of ( )3cos(10000.1 )x tt=+ is: 000 ( )( ) cos(2)()() 2 jj X FFT x t A FT AF teFFeFF = +=+ where 0.1= and 0 500F =. Let 2/ ( )() s ssF F XFX FkF = = ? , it is easily shown that 2/ ( )( )( ) s sF F XXF X F = = for ()/ 2,/ 2 Q2.3 For each ( ) ( )X FFT x t= shown, determine ( ) XDTFT x n=, where d () s x nx nT=, is the sampled sequence. The sampling frequency s Fis given for each case (b) ( )(500)(500)X FFF=+, 1200 s F = Hz Ans (b): Since ()2max( ) s FX F, 2/ ( )( ) s sF F XF X F = = 2 ( (1000/)(1000/) ss FF =+ (d) ( )2 1000 F X Frect = , 1000 s F = Hz Ans: (omitted) Q 2.5 We want to digitize and store a signal on a CD, and then reconstruct it at a later time. Let the signal ( )x t be ( )2cos(500)3sin(1000)cos(1500)x tttt=+ and let the sampling frequency be 2000 s F = Hz. (a) Determine the continuous time signal ( )y t after the reconstruction (b) Notice that ( )y t is not exactly equal ( )x t. How could you reconstruct the signal ( )x t exactly from its samples x n ? Ans: (a) Hint: Step 1: find DTFT of x n using Fourier transform of ( )x t Step 2: Let impulse response of ZOH be( )g t. Find the Fourier transform of ( )g t, i.e., ( ) ( )G FFT g t= Step 3: Assume the LPF is ideal with the frequency response ( )(/) s H Frect F F= Step 4: Find the Fourier transform of ( )y t using the results from the steps above. Specifically 2/ ( )( )( ) s F F Y FXG F = =i Step 5: Take the inverse Fourier transform of ( )Y Fto get ( )y t Q.2.7: Suppose in DAC you want to use a linear interpolation between samples as shown in accompanying figure. This reconstructor can be called a first order hold., because the equation of a line is a polynomial of degree 1. (a) Show that ( ) () s n y tx n g tnT= , with ( )g t a triangular pulse as shown in the figure. (b) Determine an expression for ( ) ( )Y FFT y t= in terms of ( ) ( )YDTFT y n= and ( ) ( )G FFT g t= Ans: similar to the ans in Q2.5 Q2.9 In the following system, let the signal x n be affected by some random error e n, as shown. The error is white, zero mean, with variance 2 1.0 e =. Determine the variance of the error n after the filter for each of the following filter ( )H z (a) ( )H z, an ideal lowpass filter with bandwidth / 4 (b) ( ) 0.5 z H z z = (c) () 1 123 4 y ns ns ns ns n=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级下册数学教案-4.2 读数 写数|人教新课标
- 中班健康活动教案:注意安全
- 文化产业技术支持服务方案
- 新鲜有机食材定制配送方案
- 2024年出版合同作者权益与稿酬支付方式
- (2024版)人工智能研发与授权使用合同
- 《2、3、4的乘法口诀》(教案)-二年级上册数学人教版
- 2024年个人借款合同范例
- (2024版)城市轨道交通建设咨询服务合同
- 交通运输行业重大节假日的安全生产及信访维稳方案
- 教学整本书阅读课《安徒生童话》(教案)部编版语文三年级上册
- 2024年河南资本集团招聘笔试参考题库附带答案详解
- 公立幼儿园食堂财务的管理制度4篇
- 临城兴业矿产资源有限公司闫家庄铁矿矿山地质环境保护与土地复垦方案
- (2024版)大学本科新增专业《智能视觉工程》解读
- 2023寺庙寺院品牌营销全案
- 循环系统监测-课件
- 学生心理健康一生一策档案模板
- 燃气行业应合力加强反恐防范
- 大学烹饪职业生涯
- 医疗影像技术部门KPI设计
评论
0/150
提交评论