2018版高考数学一轮复习第七章不等式7.4基本不等式及其应用理.docx_第1页
2018版高考数学一轮复习第七章不等式7.4基本不等式及其应用理.docx_第2页
2018版高考数学一轮复习第七章不等式7.4基本不等式及其应用理.docx_第3页
2018版高考数学一轮复习第七章不等式7.4基本不等式及其应用理.docx_第4页
2018版高考数学一轮复习第七章不等式7.4基本不等式及其应用理.docx_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七章 不等式 7.4 基本不等式及其应用 理1基本不等式(1)基本不等式成立的条件:a0,b0.(2)等号成立的条件:当且仅当ab时取等号2几个重要的不等式(1)a2b22ab(a,bR)(2)2(a,b同号)(3)ab2 (a,bR)(4)2 (a,bR)以上不等式等号成立的条件均为ab.3算术平均数与几何平均数设a0,b0,则a,b的算术平均数为,几何平均数为,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数4利用基本不等式求最值问题已知x0,y0,则(1)如果积xy是定值p,那么当且仅当xy时,xy有最小值2.(简记:积定和最小)(2)如果和xy是定值p,那么当且仅当xy时,xy有最大值.(简记:和定积最大)【知识拓展】不等式的恒成立、能成立、恰成立问题(1)恒成立问题:若f(x)在区间D上存在最小值,则不等式f(x)A在区间D上恒成立f(x)minA(xD);若f(x)在区间D上存在最大值,则不等式f(x)B在区间D上恒成立f(x)maxA成立f(x)maxA(xD);若f(x)在区间D上存在最小值,则在区间D上存在实数x使不等式f(x)B成立f(x)minA恰在区间D上成立f(x)A的解集为D;不等式f(x)B恰在区间D上成立f(x)0且y0”是“2”的充要条件()(4)若a0,则a3的最小值为2.()(5)不等式a2b22ab与有相同的成立条件()(6)两个正数的等差中项不小于它们的等比中项()1(教材改编)设x0,y0,且xy18,则xy的最大值为()A80 B77 C81 D82答案C解析x0,y0,即xy()281,当且仅当xy9时,(xy)max81.2已知f(x)x2(x0,b0,且ab4,则下列不等式恒成立的是()A. B.1C.2 Da2b28答案D解析4ab2(当且仅当ab时,等号成立),即2,ab4,选项A,C不成立;1,选项B不成立;a2b2(ab)22ab162ab8,选项D成立4(教材改编)已知x,y均为正实数,且x4y1,则xy的最大值为_答案解析1x4y24,xy()2,当且仅当x4y,即时,(xy)max.5(教材改编)若把总长为20 m的篱笆围成一个矩形场地,则矩形场地的最大面积是_ m2.答案25解析设矩形的一边为x m,则另一边为(202x)(10x)m,yx(10x)225,当且仅当x10x,即x5时,ymax25.题型一利用基本不等式求最值命题点1通过配凑法利用基本不等式例1(1)已知0x1,则x(43x)取得最大值时x的值为_(2)已知x1)的最小值为_答案(1)(2)1(3)22解析(1)x(43x)(3x)(43x)2,当且仅当3x43x,即x时,取等号(2)因为x0,则f(x)4x2(54x)3231.当且仅当54x,即x1时,等号成立故f(x)4x2的最大值为1.(3)y(x1)222.当且仅当(x1),即x1时,等号成立命题点2通过常数代换法利用基本不等式例2已知a0,b0,ab1,则的最小值为_答案4解析a0,b0,ab1,2224,即的最小值为4,当且仅当ab时等号成立引申探究1条件不变,求(1)(1)的最小值解(1)(1)(1)(1)(2)(2)52()549.当且仅当ab时,取等号2已知a0,b0,4,求ab的最小值解由4,得1.ab()(ab)21.当且仅当ab时取等号3将条件改为a2b3,求的最小值解a2b3,ab1,()(ab)121.当且仅当ab时,取等号思维升华(1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式(3)条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值(1)若正数x,y满足x3y5xy,则3x4y的最小值是_(2)已知x,y(0,),2x3()y,若(m0)的最小值为3,则m_.答案(1)5(2)4解析(1)方法一由x3y5xy可得1,3x4y(3x4y)()5.当且仅当,即x1,y时,等号成立,3x4y的最小值是5.方法二由x3y5xy得x,x0,y0,y,3x4y4y4y4(y)25,当且仅当y时等号成立,(3x4y)min5.(2)由2x3()y得xy3,(xy)()(1m)(1m2)(当且仅当,即yx时取等号),(1m2)3,解得m4.题型二基本不等式的实际应用例3(2017淄博质检)某工厂某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)x210x(万元)当年产量不小于80千件时,C(x)51x1 450(万元)每件商品售价为0.05万元通过市场分析,该厂生产的商品能全部售完(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?解(1)因为每件商品售价为0.05万元,则x千件商品销售额为0.051 000x万元,依题意得:当0x80时,L(x)1 000x0.05(x210x)250x240x250;当x80时,L(x)1 000x0.05(51x1 450)2501 200(x)L(x)(2)当0x0),即x80时“”成立(2)年平均利润为x18(x)18,x210,18(x)18108,当且仅当x,即x5时,取等号题型三基本不等式的综合应用命题点1基本不等式与其他知识交汇的最值问题例4(1)(2016菏泽一模)已知直线axbyc10(b,c0)经过圆x2y22y50的圆心,则的最小值是()A9 B8 C4 D2(2)(2016山西忻州一中等第一次联考)设等差数列an的公差是d,其前n项和是Sn,若a1d1,则的最小值是_答案(1)A(2)解析(1)圆x2y22y50化成标准方程,得x2(y1)26,所以圆心为C(0,1)因为直线axbyc10经过圆心C,所以a0b1c10,即bc1.因此(bc)()5.因为b,c0,所以24.当且仅当时等号成立由此可得b2c,且bc1,即b,c时,取得最小值9.(2)ana1(n1)dn,Sn,(n1)(21),当且仅当n4时取等号的最小值是.命题点2求参数值或取值范围例5(1)已知a0,b0,若不等式恒成立,则m的最大值为()A9 B12 C18 D24(2)已知函数f(x)(aR),若对于任意的xN*,f(x)3恒成立,则a的取值范围是_答案(1)B(2),)解析(1)由,得m(a3b)()6.又62612(当且仅当时等号成立),m12,m的最大值为12.(2)对任意xN*,f(x)3恒成立,即3恒成立,即知a(x)3.设g(x)x,xN*,则g(2)6,g(3).g(2)g(3),g(x)min,(x)3,a,故a的取值范围是,)思维升华(1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解(3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围(1)(2016福建四地六校联考)已知函数f(x)x2的值域为(,04,),则a的值是()A. B. C1 D2(2)已知各项均为正数的等比数列an满足a7a62a5,若存在两项am,an使得4a1,则的最小值为()A. B. C. D.答案(1)C(2)A解析(1)由题意可得a0,当x0时,f(x)x222,当且仅当x时取等号;当x0,y0,且1,则xy的最小值是_(2)函数y12x(x0,y0,12,2,xy24,xy的最小值为4.(2)2x2,y12x12.函数y12x(x0,y0,xy(xy)()332(当且仅当yx时取等号),当x1,y2时,(xy)min32.(2)x0,y12x1(2x)()12 12,当且仅当x时取等号,故函数y12x(x2ab答案C解析因为和同号,所以|2.2下列不等式一定成立的是()Alg(x2)lg x(x0)Bsin x2(xk,kZ)Cx212|x|(xR)D.1(xR)答案C解析当x0时,x22xx,所以lg(x2)lg x(x0),故选项A不正确;运用基本不等式时需保证“一正”“二定“三相等”,而当xk,kZ时,sin x的正负不定,故选项B不正确;由基本不等式可知,选项C正确;当x0时,有1,故选项D不正确3当x0时,函数f(x)有()A最小值1 B最大值1C最小值2 D最大值2答案B解析f(x)1,当且仅当x1时取等号4已知a0,b0,ab2,则y的最小值是()A. B4 C. D5答案C解析依题意,得()(ab)5()(52),当且仅当即a,b时取等号,即的最小值是.5(2016平顶山至阳中学期中)若函数f(x)x(x2)在xa处取最小值,则a等于()A1 B1C3 D4答案C解析当x2时,x20,f(x)(x2)2224,当且仅当x2(x2),即x3时取等号,即当f(x)取得最小值时,x3,即a3,故选C.6已知x0,y0,且4xyx2y4,则xy的最小值为()A. B2 C. D2答案D解析x0,y0,x2y2,4xy(x2y)4xy2,44xy2,即(2)(1)0,2,xy2.*7.(2016吉林九校第二次联考)若正数a,b满足1,则的最小值是()A1 B6 C9 D16答案B解析正数a,b满足1,b0,解得a1.同理可得b1,所以9(a1)26,当且仅当9(a1),即a时等号成立,所以最小值为6.故选B.8(2016唐山一模)已知x,yR且满足x22xy4y26,则zx24y2的取值范围为_答案4,12解析2xy6(x24y2),而2xy,6(x24y2),x24y24(当且仅当x2y时取等号)又(x2y)262xy0,即2xy6,zx24y262xy12(当且仅当x2y时取等号)综上可知4x24y212.9(2016潍坊模拟)已知a,b为正实数,直线xya0与圆(xb)2(y1)22相切,则的取值范围是_答案(0,)解析xya0与圆(xb)2(y1)22相切,d,ab12,即ab1,(b1)4240.又a,b为正实数,的取值范围是(0,)10设a0,b0,若是3a与3b的等比中项,则的最小值为_答案4解析由题意知3a3b3,即3ab3,ab1,a0,b0,(ab)2224,当且仅当ab时,等号成立*11.(2017东莞调研)函数yloga(x3)1(a0,且a1)的图象恒过定点A,若点A在直线mxny10上,其中m,n均大于0,则的最小值为_答案8解析yloga(x3)1恒过定点A(2,1),由A在直线mxny10上则2mn10,即2mn1.4248(当且仅当,即m,n时等号成立)12已知x0,y0,且2x5y20.(1)求ulg xlg y的最大值;(2)求的最小值解(1)x0,y0,由基本不等式,得2x5y2.2x5y20,220,xy10,当且仅当2x5y时,等号成立因此有解得此时xy有最大值10.ulg xlg ylg(xy)lg 101.当x5,y2时,ulg xlg y有最大值1.(2)x0,y0,当且仅当时,等号成立由解得的最小值为.13经市场调查,某旅游城市在过去的一个月内(以30天计),第t天(1t30,tN*)的旅游人数f(t)(万人)近似地满足f(t)4,而人均消费g(t)(元)近似地满足g(t)120|t20|.(1)求该城市的旅游日收益W(t)(万元)与时间t(1t30,tN*)的函数关系式;(2)求该城市旅游日收益的最小值解(1)W(t)f(t)g(t)(4)(120|t20|)(2)当t1,20时,4014t4012441(t5时取最小值)当t(20,30时,因为W(t)5594t递减,所以t30时,W(t)有最小值W(30)443,所以t1,30时,W(t)的最小值为441万元14.如图所示,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1 km,某炮位于坐标原点已知炮弹发射后的轨迹在方程ykx(1k2)x2(k0)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论