已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第42课 三角形中的最值问题考点提要1掌握三角形的概念与基本性质2能运用正弦定理、余弦定理建立目标函数,解决三角形中的最值问题基础自测1(1)ABC中,则A的值为 30 或90 ;(2)ABC中,当A= 时,取得最大值 2在ABC中,则的取值范围是 解 由, 令,由,得3锐角三角形ABC中,若A=2B,则B的取值范围是 30B45 4设R,r分别为直角三角形的外接圆半径和内切圆半径,则的最大值为5在ABC中,内角A,B,C所对边的边长分别是,若,则B的取值范围是 0B120 6在ABC中,若AB,则下列不等式中,正确的为 ; ; B,故正确;B,故正确(或由余弦函数在上的单调性知正确);由AB,故正确知识梳理1直角ABC中,内角A,B,C所对边的边长分别是,C=90,若内切圆的半径为r,则2在三角形中,勾股定理、正弦定理、余弦定理是基础,起到工具性的作用它们在处理三角形中的三角函数的求值、化简、证明、判定三角形的形状及解三角形等问题中有着广泛的应用例题解析例1 已知直角三角形的周长为1,求其面积的最大值点评 例2 已知ABC中,(1)求最小内角的最大值; (2)若ABC是锐角三角形,求第三边c的取值范围解 (1)由三角形三边关系得第三边c满足解得,故最小内角为A又(当且仅当时等号成立),所以A30,即最小内角的最大值为30(2)因为ABC是锐角三角形,即A,B,C三个角均为锐角,又因为ab,所以AB,故只需说明B,C为锐角即可由B,C为锐角得 即解得点评 在锐角三角形中研究问题的时候,一定要注意其三个角都为锐角这个条件另外要注意变形的等价性,如“内角A为锐角”例3 (2008江苏)求满足条件的ABC的面积的最大值解 设BC,则AC 根据面积公式得=,根据余弦定理得,代入上式得=,由三角形三边关系有 解得,故当时取最大值点评 例4 如图,已知A=30,P,Q分别在A的两边上,PQ=2当P,Q处于什么位置时,APQ的面积最大?并求出APQ的最大面积点评 表示三角形的面积可采用两边及夹角的表示法,本题解法一运用了余弦定理和基本不等式,解法二运用了正弦定理和基本不等式建立目标函数例5 已知ABC的周长为6,成等比数列,求:(1)ABC的面积S的最大值; (2)的取值范围解 设依次为a,b,c,则a+b+c=6,b 2 =ac由得(当且仅当a=c时,等号成立),又由余弦定理得(当且仅当a=c时,等号成立),故有, (1),即(当且仅当a=b= c时,等号成立); (2) 点评 本题运用均值定理进行放缩,再运用不等式的性质求解(1)为不等式问题,(2)为函数问题方法总结1三角形中角的最值(范围)问题,一般运用余弦定理,通过求该角余弦的范围,根据余弦函数的单调性处理要注意三角形三边关系和内角范围的隐含条件,尤其要注意锐角三角形的角的关系2三角形中边的最值(范围)问题,主要由有三角形三边关系决定3三角形中面积的最值(范围)问题,可以角为自变量,也可以边为自变量建立目标函数,要注意自变量的范围练习42 三角形的最值问题班级 姓名 学号 1若直角三角形斜边的长m(定值),则它的周长的最大值是 2在锐角ABC中,若,则的取值范围是 (,) 解 ,而,3在ABC中,若,则A的取值范围是 0B45 4若2、3、x分别是锐角三角形的三边长,则x的取值范围是 5若三角形两边之和为16 cm,其夹角为60,则该三角形面积的最大值是 ,周长的最小值是 24 6已知ABC中,A = 60,BC = 4,则AB + AC的最大值为_7钝角三角形的三边为,其中最大角不超过120,则的取值范围是 解 由题意钝角三角形中,为最大边且最大角不超过120,因此得 , , ,由得,得,得或,故8已知四边形ABCD的对角线AC与BD相交于点O,若SAOB=9,SCOD=16,则四边形面积的最小值是 49 9(2006全国)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为 cm2解 由题意可围成以下几种三角形 图(1)中,; 图(2)中,;图(3)中,比较上述几种情况可知,能够得到三角形的最大面积为cm2点评 当周长一定时,三边越是接近,其面积越大这是等周问题中的一个基本结论可见,面积最大的三角形应该这样构成:2+5,3+4,610在ABC中,已知(1)求证:a、b、c成等差数列; (2)求角B的取值范围解 11如图,正方形ABCD的边长为a,E、F分别是边BC、CD上的动点,EAF=30,求AEF面积的最小值解 设AEF的面积为S,BAE=(1545),则由EAF=30得DAF=正方形ABCD的边长为a,在RtBAE中,;在RtDAF中, 12(2008四川延考)在ABC中,内角A,B,C对边的边长分别是,已知(1)若,且A为钝角,求内角A与C的大小;(2)若,求ABC面积的最大值解 (1)由题设及正弦定理,有故因A为钝角,所以由,可得,C=,A=(2)由余弦定理及条件,有,故由于ABC面积,又,当时,两个不等式中等号同时成立,所以ABC面积的最大值为备用题1直角ABC的斜边AB=2,内切圆的半径为r,则r的最大值为 2在ABC中,已知sin2A + sin2B = 5sin2C,求证:解 等式sin2A + sin2B = 5sin2C立即联想正弦定理,有a2+b2=5c2 而a2+b2=5c2与余弦定理连起来也无可非议 c2= a2+b22abcosC,5c2= c2+2abcosC,4c2=2abcosC 于是可知cosC0,C为锐角,而5c2= a2+b22ab, 故4c2=2abcosC5c2cosC cosC,sinC 点评 从外形的联想,到方法的选择,这样的直觉思维随时随地都会出现在解题过程中3已知ABC的内角满足(1)求A; (2)若ABC的面积为4,求ABC周长的最小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年信阳客运从业资格证考试题答案
- 2024年宝鸡客运从业资格证2024年考试题
- 2024年度展览布展工程承包合同
- 2024年陇南道路旅客运输驾驶员从业资格考试试题及答案
- 2024年辽宁客运驾驶从业资格证模拟考试题答案
- 2023届新高考化学选考一轮总复习学案-第2讲 离子反应
- 2023年高考押题预测卷03(新高考重庆卷)地理(全解全析)
- 2024年度KTV场所消防设施维护合同
- 数字雕塑与服装艺术设计的融合之美
- 丙烯酸系UV光固化压敏胶的制备及性能研究
- 河北省石家庄市长安区2023-2024学年五年级上学期期中英语试卷
- 品牌经理招聘笔试题及解答(某大型国企)2025年
- 多能互补规划
- 珍爱生命主题班会
- 《网络数据安全管理条例》课件
- 消除“艾梅乙”医疗歧视-从我做起
- 八年级历史上册(部编版)第六单元中华民族的抗日战争(大单元教学设计)
- 公司研发项目审核管理制度
- 《诗意的色彩》课件 2024-2025学年人美版(2024)初中美术七年级上册
- 小学生主题班会《追梦奥运+做大家少年》(课件)
- 《抖音运营》课件-1.短视频与抖音认知基础
评论
0/150
提交评论