电机学-习题答案.doc_第1页
电机学-习题答案.doc_第2页
电机学-习题答案.doc_第3页
电机学-习题答案.doc_第4页
电机学-习题答案.doc_第5页
已阅读5页,还剩76页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

张广溢 电机学习题解答绪 论0.1 电机和变压器的磁路常用什么材料制成,这类材料应具有哪些主要特性?答:电机和变压器的磁路常用导磁性能高的硅钢片叠压制成,磁路的其它部分常采用导磁性能较高的钢板和铸铁制成。这类材料应具有导磁性能高、磁导率大、铁耗低的特征。0.2在图0.3中,当给线圈外加正弦电压时,线圈和中各感应什么性质的电动势?电动势的大小与哪些因素有关?答:当给线圈外加正弦电压时,线圈中便有交变电流流过,产生相应的交变的磁动势,并建立起交变磁通,该磁通可分成同时交链线圈、的主磁通和只交链线圈的漏磁通。这样,由主磁通分别在线圈和中感应产生交变电动势。由漏磁通在线圈中产生交变的。电动势的大小分别和、的大小,电源的频率,交变磁通的大小有关。0-3 感应电动势中的负号表示什么意思? 答:是规定感应电动势的正方向与磁通的正方向符合右手螺旋关系时电磁感应定律的普遍表达式;当所有磁通与线圈全部匝数交链时,则电磁感应定律的数学描述可表示为;当磁路是线性的,且磁场是由电流产生时,有为常数,则可写成。 0.4试比较磁路和电路的相似点和不同点。答:磁路和电路的相似只是形式上的,与电路相比较,磁路有以下特点:1)电路中可以有电动势无电流,磁路中有磁动势必然有磁通;2)电路中有电流就有功率损耗;而在恒定磁通下,磁路中无损耗3)由于G导约为G绝的1020倍,而仅为的倍,故可认为电流只在导体中流过,而磁路中除主磁通外还必须考虑漏磁通;4)电路中电阻率在一定温度下恒定不变,而由铁磁材料构成的磁路中,磁导率随变化,即磁阻随磁路饱和度增大而增大。0.5电机运行时,热量主要来源于哪些部分?为什么用温升而不直接用温度表示电机的发热程度?电机的温升与哪些因素有关?答:电机运行时,热量主要来源于各种损耗,如铁耗、铜耗、机械损耗和附加损耗等。当电机所用绝缘材料的等级确定后,电机的最高允许温度也就确定了,其温升限值则取决于冷却介质的温度,即环境温度。在电机的各种损耗和散热情况相同的条件下,环境温度不同,则电机所达到的实际温度不同,所以用温升而不直接用温度表示电机的发热程度。电机的温升主要决定于电机损耗的大小、散热情况及电机的工作方式。0.6 电机的额定值和电机的定额指的是什么?答:电机的额定值是指电机在某种定额下运行时各物理量的规定值;而电机的定额是指制造厂按国家标准的要求对电机的全部电量和机械量的数值及运行的持续时间和顺序所作的规定。0-7 在图0-2中,已知磁力线的直径为10cm,电流I1 = 10A,I2 = 5A,I3 = 3A,试求该磁力线上的平均磁场强度是多少?答:平均磁场强度0.8 在图0.8所示的磁路中,线圈中通入直流电流,试问:(1) 电流方向如图所示时,该磁路上的总磁动势为多少?(2) 中电流反向,总磁动势又为多少?(3) 若在图中处切开,形成一空气隙,总磁动势又为多少?(4) 比较两种情况下铁心中的的相对大小,及中铁心和气隙中的相对大小?解:(1) (2) (3)不变(4)由于,而, 所以,。 其中 和 分别 图0.8表示两种情况下的各物理量。 在(3)中,由于,所以 。0-9 两根输电线在空间相距2m,当两输电线通入的电流均为100A时,求每根输电线单位长度上所受的电磁力为多少?并画出两线中电流同向及反向时两种情况下的受力方向。解:由,得每根输电线单位长度上所受的电磁力为当电流同向时,电磁力为吸力;当电流反向时,电磁力为斥力。如下图所示:0-10 一个有铁心的线圈,线圈电阻为2。将其接入110V交流电源,测得输入功率为22W,电流为1A,试求铁心中的铁耗及输入端的功率因数。解: 第一篇 变 压 器第 1 章1.1变压器是根据什么原理进行电压变换的?变压器的主要用途有哪些?答:变压器是一种静止的电器设备,它利用电磁感应原理,把一种电压等级的交流电能转换成频率相同的另一种电压等级的交流电能。变压器的主要用途有:变压器是电力系统中实现电能的经济传输、灵活分配和合理使用的重要设备,在国民经济其他部门也获得了广泛的应用,如:电力变压器(主要用在输配电系统中,又分为升压变压器、降压变压器、联络变压器和厂用变压器)、仪用互感器(电压互感器和电流互感器,在电力系统做测量用)、特种变压器(如调压用的调压变压器、试验用的试验变压器、炼钢用的电炉变压器、整流用的整流变压器、焊接用的电焊变压器等)。1.2 变压器有哪些主要部件?各部件的作用是什么?答:电力变压器的基本构成部分有:铁心、绕组、绝缘套管、油箱及其他附件等,其中铁心是变压器的主磁路,又是它的机械骨架。绕组由铜或铝绝缘导线绕制而成,是变压器的电路部分。绝缘套管:变压器的引出线从油箱内部引到箱外时必须通过绝缘套管,使引线与油箱绝缘。油箱:存放变压器油。分接开关,可在无载下改变高压绕组的匝数,以调节变压器的输出电压。1.3铁心在变压器中起什么作用?如何减少铁心中的损耗?答:铁心是变压器的主磁路,又是它的机械骨架。为了提高磁路的导磁性能,减少铁心中的磁滞、涡流损耗,铁心一般用高磁导率的磁性材料硅钢片叠成,其厚度为,两面涂以厚的漆膜,使片与片之间绝缘。1.4 变压器有哪些主要额定值?原、副方额定电压的含义是什么?答:变压器的主要额定值有:额定容量、额定电压和、额定电流和 、额定频率等。原、副方额定电压的含义是指:正常运行时规定加在一次侧的端电压称为变压器一次侧的额定电压;二次侧的额定电压是指变压器一次侧加额定电压时二次侧的空载电压。对三相变压器,额定电压、额定电流均指线值。1-5 一台单相变压器,SN=5000kVA,U1N/U2N=10/6.3kV,试求原、副方的额定电流。解: 1-6 一台三相变压器,SN=5000kVA,U1N/U2N=35/10.5kV,Y,d接法,求原、副方的额定电流。解: 第 2 章2.1 在研究变压器时,原、副方各电磁量的正方向是如何规定的?答:从原理上讲,正方向可以任意选择,但正方向规定不同,列出的电磁方程式和绘制的相量图也不同。通常按习惯方式规定正方向,称为惯例。具体原则如下:(1)在负载支路,电流的正方向与电压降的正方向一致;而在电源支路,电流的正方向与电动势的正方向一致;(2)磁通的正方向与产生它的电流的正方向符合右手螺旋定则;(3)感应电动势的正方向与产生它的磁通的正方向符合右手螺旋定则。2.2 在变压器中主磁通和原、副边绕组漏磁通的作用有什么不同?它们各是由什么磁动势产生的?在等效电路中如何反映它们的作用?答:(1)主磁通在原、副绕组中均感应电动势,当副方接上负载时便有电功率向负载输出,故主磁通起传递能量的作用;而漏磁通不起传递能量的作用,仅起压降作用。(2)空载时,有主磁通和一次侧绕组漏磁通,它们均由一次侧磁动势激励产生;负载时有主磁通,一次侧绕组漏磁通,二侧次绕组漏磁通。主磁通由一次绕组和二次绕组的合成磁动势即激励产生,一次侧绕组漏磁通由一次绕组磁动势激励产生,二次侧绕组漏磁通由二次绕组磁动势激励产生。(3)在等效电路中,主磁通用励磁参数来反映它的作用,一次侧漏磁通用漏电抗来反映它的作用,而二次侧漏磁通用漏电抗来反映它的作用。2.3为了在变压器原、副绕组方得到正弦波感应电动势,当铁心不饱和时激磁电流呈何种波形?当铁心饱和时情形又怎样?答:为了在变压器原、副绕组方得到正弦波感应电动势,当铁心不饱和时,因为磁化曲线是直线,励磁电流和主磁通成正比,故当主磁通成正弦波变化,激磁电流亦呈正弦波变化。而当铁心饱和时,磁化曲线呈非线性,为使磁通为正弦波,励磁电流必须呈尖顶波。2.4变压器的外加电压不变,若减少原绕组的匝数,则变压器铁心的饱和程度、空载电流、铁心损耗和原、副方的电动势有何变化?答:根据可知,因此,一次绕组匝数减少,主磁通将增加,磁密,因不变,将随的增加而增加,铁心饱和程度增加;由于磁导率下降。因为磁阻,所以磁阻增大。根据磁路欧姆定律 ,当线圈匝数减少时,空载电流增大;又由于铁心损耗,所以铁心损耗增加;因为外加电压不变,所以根据,所以原方电动势基本不变,而副方电动势则因为磁通的增加而增大。2.5一台额定电压为的变压器,若误将低压侧接到的交流电源上,将会产生什么后果?答:根据可知,此时主磁通增加接近倍,磁路饱和程度大增,励磁电流将会大大增加,铁耗和铜耗增大,变压器过热。同时噪声过大,振动明显。2.6变压器折算的原则是什么?如何将副方各量折算到原方?答:折算仅仅是研究变压器的一种方法,它不改变变压器内部电磁关系的本质。折算的原则是保证折算方折算前后所产生的磁动势不变。副方各量折算方法如下: 将副方电流除以;副方感应电动势、电压乘以;漏阻抗、负载阻抗应乘以。 2.7变压器的电压变化率是如何定义的?它与哪些因素有关?答:变压器的电压变化率定义为:当变压器的原方接在额定电压、额定频率的电网上,副方的空载电压与给定负载下副方电压的算术差,用副方额定电压的百分数来表示的数值,即变压器电压变化率可按下式计算:。可知变压器电压变化率的大小主要和以下物理量相关:(1)电压变化率与负载的大小(值)成正比;在一定的负载系数下,当负载为阻感负载时,漏阻抗(阻抗电压)的标么值越大,电压变化率也越大;(2)电压变化率还与负载的性质,即功率因角数的大小和正负有关。2.8为什么可以把变压器的空载损耗看做变压器的铁损,短路损耗看做额定负载时的铜损? 答:空载时,绕组电流很小,绕组电阻又很小,所以铜损耗很小,故铜损耗可以忽略,空载损耗可以近似看成铁损耗。测量短路损耗时,变压器所加电压很低,而根据可知,由于漏阻抗压降的存在,则更小。又根据可知,因为很小,磁通就很小,因此磁密很低。再由铁损耗,可知铁损耗很小,可以忽略,额定负载时短路损耗可以近似看成额定负载时的铜损耗。2.9变压器在高压側和低压側分别进行空载试验,若各施加对应的额定电压,所得到铁耗是否相同? 答:相同。空载试验时输入功率为变压器的铁损耗,无论在高压边还是在低压边加电压,都要加到额定电压,根据可知,; ,故,即。因此无论在哪侧做,主磁通大小都是相同的,铁损耗就一样。短路试验时输入功率为变压器额定负载运行时的铜损耗,无论在高压边还是在低压边做,都要使电流达到额定电流值,绕组中的铜损耗是一样的 2-10一台单相变压器,SN=5000kVA,U1N/U2N=35/6.0kV,fN=50HZ,铁心有效面积A=1120cm2,铁心中的最大磁密Bm=1.45T,试求高、低压绕组的匝数和变比。解: 高压绕组的匝数变压器的变比低压绕组的匝数2-11一台单相变压器,SN=100kVA,U1N/U2N=6000/230V,R1=4.32,x1=8.9,R2=0.0063,x2=0.013。求:1) 折算到高压侧的短路参数Rk、xk和Zk;2) 折算到低压侧的短路参数k、k和k;3) 将1)、2)的参数用标么值表示,由计算结果说明什么问题?4) 变压器的短路电压uk及其有功分量ukr、无功分量ukx;5) 在额定负载下,功率因数分别为cos2=1、cos2=0.8(滞后)、cos2=0.8(超前)3种情况下的U。解: 1) 2) 3) 4) 5) U1( Rk* cos2+ xk* sin2) 100 =(0.02391.0+0.05040) 100 =2.39 U2( Rk* cos2+ xk* sin2) 100 =(0.02390.8+0.05040.6) 100 =4.87 U3( Rk* cos2+ xk* sin2) 100 =(0.02390.8 - 0.05040.6) 100 = -1.052-12一台三相变压器,SN=750kVA,U1N/U2N=10000/400V,Y,d接法,f=50HZ。试验在低压侧进行,额定电压时的空载电流I0=65A,空载损耗p0=3700W;短路试验在高压侧进行,额定电流时的短路电压Uk=450V,短路损耗pkN=7500W(不考虑温度变化的影响)。试求:1) 折算到高压边的参数,假定R1=2=,x1=2=;2) 绘出T形电路图,并标出各量的正方向;3) 计算满载及cos2=0.8(滞后)时的效率N;4) 计算最大效率max。解:1) , 折算至高压侧的激磁参数: 短路参数计算: Zk =Rk =Xk=2) T形电路图如下: 4) 满载时的效率 第 3 章3.1 三相变压器组和三相心式变压器在磁路结构上各有什么特点?答:三相变压器组磁路结构上的特点是各相磁路各自独立,彼此无关;三相心式变压器在磁路结构上的特点是各相磁路相互影响,任一瞬间某一相的磁通均以其他两相铁心为回路。3.2三相变压器的联结组是由哪些因素决定的?答:三相变压器的联结组是描述高、低压绕组对应的线电动势之间的相位差,它主要与(1)绕组的极性(绕法)和首末端的标志有关;(2)绕组的连接方式有关。3.4 Y,y接法的三相变压器组中,相电动势中有三次谐波电动势,线电动势中有无三次谐波电动势?为什么?答:线电动势中没有三次谐波电动势,因为三次谐波大小相等,相位上彼此相差,即相位也相同。当采用Y,y接法时,线电动势为两相电动势之差,所以线电动势中的三次谐波为零。以相为例,三次谐波电动势表达式为,所以线电动势中没有三次谐波电动势。 3.5变压器理想并联运行的条件有哪些?答:变压器理想并联运行的条件有:(1) 各变压器高、低压方的额定电压分别相等,即各变压器的变比相等;(2) 各变压器的联结组相同;(3) 各变压器短路阻抗的标么值相等,且短路电抗与短路电阻之比相等。上述三个条件中,条件(2必须严格保证。3.6 并联运行的变压器,如果联结组不同或变比不等会出现什么情况?答:如果联结组不同,当各变压器的原方接到同一电源,副方各线电动势之间至少有30的相位差。例如Y,y0和Y,d11两台变压器并联时,副边的线电动势即使大小相等,由于对应线电动势之间相位差300,也会在它们之间产生一电压差,如图所示。其大小可达=sin15=0.518。这样大的电压差作用在变压器副绕组所构成的回路上,必然产生很大的环流(几倍于额定电流),它将烧坏变压器的绕组。如果变比不等,则在并联运行的变压器之间也会产生环流。3.7 两台容量不相等的变压器并联运行,是希望容量大的变压器短路电压大一些好,还是小一些好?为什么?答:希望容量大的变压器短路电压小一些好,这是因为短路电压大的小,在并联运行时,不容许任何一台变压器长期超负荷运行,因此并联运行时最大的实际总容量比两台额定容量之和要小,只可能是满载的一台的额定容量加上另一台欠载的实际容量。这样为了不浪费变压器容量,我们当然希望满载的一台,即短路电压小的一台容量大,欠载运行的一台容量越小越好。3.8为什么变压器的正序阻抗和负序阻抗相同?变压器的零序阻抗决定于哪些因素?答:由于正序和负序均是对称的,仅存在B相超前还是C相超前的差别,对变压器的电磁本质没什么不同,因此负序系统的等效电路和负序阻抗与正序系统相同,即;变压器的零序阻抗主要决定于(1)三相变压器绕组的连接方式(2)磁路的结构等因素。3.9从带单相负载的能力和中性点移动看,为什么Y,yn接法不能用于三相变压器组,却可以用于三相心式变压器?答: Y,yn接线的组式变压器接单相负载时,由于零序阻抗大(),负载电流将很小,因此根本不能带单相负载。但很小的零序电流就会产生很大的零序电动势,造成中点浮动较大,相电压严重不对称。在极端的情况下,如一相发生短路,即短路电流仅为正常激磁电流的3倍,使其余两相电压提高到原来的倍,这是很危险的。因此三相变压器组不能接成Y,yn联结组。而心式变压器,由于零序阻抗很小(很小),单相负载电流的大小主要由负载阻抗决定,因此它可以带一定的单相负载。只要适当限制中线电流,则相电压的偏移也不会很大。因此三相心式变压器组可以接成Y,yn联结组。3.10 一台单相变压器,220V110V,绕组标志如右图所示:将与连接,高压绕组接到220V的交流电源上,电压表接在上,如、同极性,电压表读数是多少?如、异极性呢?解:、同极性时压表读数是: 、异极性时压表读数是:3-11 根据题图3-2的接线图,确定其联结组别。 1) 2) 3) 题图 3-2解: 1) 2) 3)3.12 根据下列变压器的联结组别画出其接线图: 1)Y,d5;2)Y,y2;3)D,y11。解:1)Y,d5,有两种接法,如下图a)、b)所示。 2)Y,y2,只有一种接法,如下图2)所示。3)D,y11,有两种接法,下图3)所示高压边为AX-CZ-BY接法,另一种接法AX-CZ-BY略。 3-13 两台并联运行的变压器,在SNI=1000kAV,SNII=500kAV,不允许任何一台变压器过载的情况下,试计算下列条件并联变压器组可供给的最大负载,并对其结果进行讨论。1)=0.9;2)=0.9;解:1),第一台变压器先达满载。设,则2),第二台变压器先达满载。设,则讨论:可见,并联运行时,容量大的变压器,其较小,则并联变压器组利用率较高。3-14 两台变压器数据如下:SNI=1000kAV,ukI=6.5,SNII=2000kAV,ukII=7.0联结组均为Y,d11额定电压均为35/10.5kVA。现将它们并联运行,试计算:1)当输出为3000kVA时,每台变压器承担的负载是多少?2)在不允许任何一台过载的条件下,并联组最大输出负载是多少?此时并联组的利用率是多少?解:1)由 得 2),第一台变压器先达满载。设,则 3.15 某变电所总负载是3000kVA,若选用规格完全相同的变压器并联运行,每台变压器的额定容量为1000kVA。1)在不允许任何一台变压器过载的情况下需要几台变压器并联运行?2)如果希望效率最高,需要几台变压器并联运行?已知每台变压器的损耗是:。解:1),需要3台变压器并联运行。2) ,需要5台变压器并联运行。3.16试将三相不对称电压:分解为对称分量。解: 3.16试将三相不对称电压:分解为对称分量。解: 3-17 一台容量为100kVA,Y,yn0联结组的三相心式变压器,6000400 V,=0.02+j0.05,=0.1+j0.6如发生单相对地短路,试求:1)原绕组的三相电流;2)副方的三相电压; 3)中点移动的数值。 解:1)单相对地短路时副方的短路电流 2) 副方的三相电压,忽略和,则3) 中点移动副边:第 4 章4.1变压器的空载电流很小,为什么空载合闸电流却可能很大?答:变压器空载合闸时,铁心磁通处于瞬变过程中,此时的磁通最大值可达稳态时的2倍,由于铁心有磁饱和现象,其对应的励磁电流将急剧增大到稳态值的几十倍,甚至上百倍。4.2变压器在什么情况下突然短路电流最大?大致是额定电流的多少倍?对变压器有何危害?答:当时发生突然短路,绕组中暂态分量短路电流初始值最大,经过半个周期()时出现冲击电流,其值约为额定电流的20-30倍。这是一个很大的冲击电流,它会在变压器绕组上产生很大的电磁力,严重时可能使变压器绕组变形而损坏。4.3变压器突然短路电流的大小和有什么关系?为什么大容量变压器的设计得大些?答:由=,可知变压器突然短路电流大小与短路阻抗的标幺值大小成反比。因为大容量变压器短路电流相对较大,继电保护相对较难,所以为了限制短路电流,应将设计得大些。 4.4变压器绕组上承受的径向电磁力和轴向电磁力方向如何?哪一种电磁力对绕组的破坏作用更大一些?为什么?答:变压器绕组上承受的径向电磁力方向为两个绕组受到的径向方向相反,外层绕组受张力,内层绕组受压力;轴向电磁力其作用方向为从绕组两端挤压绕组。由于绕组两端最大,所以靠近铁的部分线圈最容易遭受损坏,故结构上必须加强机械支撑。4.5变压器运行时可能出现哪些过电压?如何保护?答:变压器运行时可能出现的过电压有:一是由于输电线直接遭受雷击或雷云放电在输电线上感应的过电压,称为大气过电压;另一种情况是当变压器或线路上开关合闸或拉闸时,伴随着系统电磁能量的急剧变化而产生的过电压,称为操作过电压。操作过电压一般为额定电压的34.5倍,而大气过电压可达额定电压的812倍。为了保证变压器的安全可靠运行,必须采取过电压保护措施。常用的方法有:(1)安装避雷器(2)加强绕组的绝缘(3)增大绕组的匝间电容(4)采用中性点接地系统。4-6 有一台三相变压器,联结组,试求:1)高压方的稳态短路电流及其标么值;2)在最不利的情况下发生副方突然短路时短路电流的最大值和标么值。 解:1) 2) 第 5 章5.1三绕组变压器等效电路中的电抗与双绕组变压器的漏电抗有何不同?为什么有时在中有一个会出现负值?答:、并不代表三绕组变压器各绕组的漏电抗,而是各绕组自感电抗和各绕组之间的互感电抗组合而成得等效电抗。对于双绕组变压器,每个绕组产生的漏磁通只与本绕组交链而不与另一个绕组交链,即这些漏磁通均为自感漏磁通。因此双绕组变压器的漏电抗为本绕组的自漏感电抗。在三绕组变压器中,的大小与各绕组在铁心上的排列位置有关。排列在中间位置的绕组其组合的等效电抗最小,常接近于零,甚至为微小的负值。负电抗是电容性质的,这当然不是变压器绕组真具有电容性,各绕组之间的漏电抗、是不会为负的,只是在相互组合时产生的负值而已。5.2 什么是自耦变压器的额定容量、绕组容量和传导容量?它们之间的关系是什么?答:自耦变压器的容量是指它的输入容量或输出容量。额定运行时的容量用表示,即自耦变压器的额定容量。由于自耦变压器一、二次侧既有磁的联系,也有电的联系,因此它从一次侧传递到二次侧的容量即额定容量由两部分组成:由绕组的串联部分和公共部分之间经电磁感应作用传送的功率,即绕组容量;由绕组的公共部分靠电的联系直接由一次侧传递到二次侧的功率,即传导功率。他们之间的关系可以简单的表示为: ,。其中:表示自耦变压器的绕组容量, 表示自耦变压器的额定容量,表示自耦变压器的传导容量。5.3为什么电压互感器在运行时不允许副边短路?电流互感器在运行时不允许副边开路?答:由于电压互感器副边所接的测量仪表,例如电压表、功率表的电压线圈等,其阻抗很大,故电压互感器运行时相当于一台降压变压器的空载运行,电压互感器是按空载运行设计的。若电压互感器在运行时副边短路会产生很大的短路电流,烧坏互感器的绕组。电流互感器在运行时不允许副边开路是因为电流互感器的原方电流是由被测试的电路决定的,在正常运行时,电流互感器的副方相当于短路,副方电流有强烈的去磁作用,即副方的磁动势近似与原方的磁动势大小相等、方向相反,因而产生铁心中的磁通所需的合成磁动势和相应的励磁电流很小。若副方开路,则原方电流全部成为励磁电流,使铁心中的磁通增大,铁心过分饱和,铁耗急剧增大,引起互感器发热。同时因副绕组匝数很多,将会感应出危险的高电压,危及操作人员和测量设备的安全。5-4 一台三相三绕组变压器,额定容量为10000/10000/10000kVA,额定电压110/38.5/11kV,其联结组为YN,yn0,d11,短路试验数据如下:绕 组短路损耗(kW)阻抗电压(%)高一中111.20高一低148.75中一低82.70试计算简化等效电路中的各参数。解: 5-5 一台三相双绕组变压器,SN=31500kVA,U1N/U2N=400/110kV,po=105kW,pkN=205kW。如果改接成510/110kV自耦变压器,试求:1) 自耦变压器的额定容量、传导容量和绕组容量各是多少?2) 在额定负载和cos=0.8的条件下运行时,双绕组变压器和改接成自耦变压器的效率各是多少? 解:1) 自耦变压器的绕组容量自耦变压器的额定容量自耦变压器的传导容量3) 双绕组变压器的效率改接成自耦变压器后po、pkN不变,其效率第二篇 交流电机的共同理论第6章6.1 时间和空间电角度是怎样定义的?机械角度与电角度有什么关系?答 空间电角度是指一对主磁极所占的空间距离,称为360的空间电角度。时间电角度是指感应电动势交变一次所需要的时间为360的时间电角度。机械角度和电角度之间的关系为:电角度=极对数机械角度。6.2 整数槽双层绕组和单层绕组的最大并联支路数与极对数有何关?答 采用60相带法,在单层绕组中,每对极下,必须用两个相带下的槽导体组成一个线圈组(如用A相带和X相带的槽导体组成A相线圈组),也就是每对极只有一个极相组,所以最大并联支路数等于极对数,而在双层绕组中,每个槽中上下层分开,一个相带下的线圈可组成一个极相组,每对极有二个极相组,所以最大并联支路数可等于极对数的二倍,即。6.3为什么单层绕组采用短距线圈不能削弱电动势和磁动势中的高次谐波?答 单层绕组采用60相带,在每对极下,必须用两个相带下的槽导体组成一个极相组,所以对于单层绕组来说,一般它只能组成整距绕组,即使采用短距连接,各线圈的电动势和磁动势并未改变,所以不能削弱谐波。6.4 何谓相带?在三相电机中为什么常用60相带绕组,而不用120相带绕组?答 相带通常指一个线圈组在基波磁场中所跨的电角度。常采用60相带绕组是因为:(1)分布系数较大;(2)有正负相带而不含偶数次谐波磁动势。6.5 试说明谐波电动势产生的原因及其削弱方法。答 一般在同步电机中,磁极磁场不可能为正弦波,由于电机磁极磁场非正弦分布所引起的发电机定子绕组电动势就会出现高次谐波。为了尽量减少谐波电动势的产生,我们常常采取一些方法来尽量削弱电动势中的高次谐波,使电动势波形接近于正弦。一般常用的方法有:(1) 使气隙磁场沿电枢表面的分布尽量接近正弦波形。(1) 用三相对称绕组的联结来消除线电动势中的3次及其倍数次奇次谐波电动势。(2) 用短距绕组来削弱高次谐波电动势。(4) 采用分布绕组削弱高次谐波电动势。(5) 采用斜槽或分数槽绕组削弱齿谐波电动势。6.6 试述分布系数和短距系数的意义。若采用长距线圈,其短距系数是否会大于1。答 短距系数:它表示线圈短距后感应电动势比整距时应打的折扣。由于短距或长距时,线圈电动势为导体电动势的相量和,而全距时为代数和,故除全距时=1 以外,在短距或长距时,都恒小于1。 分布系数: 由于绕组分布在不同的槽内,使得q个分布线圈的合成电动势小于q个集中线圈的合成电动势,由此所引起的折扣。不难看出,。6.7 齿谐波电动势是由于什么原因引起的?在中、小型感应电机和小型凸极同步电机中,常用转子斜槽来削弱齿谐波电动势,斜多少合适?答 在交流电机中,空载电动势的高次谐波中,次数为的谐波较强,由于它与一对极下的齿数有特定关系,所以我们称之为齿谐波电动势。在中、小型感应电机和小型凸极同步电机中,常用转子斜槽来削弱齿谐波电动势,一般斜一个齿距。6-8 已知Z=24,2p=4,a=1,试绘制三相单层绕组展开图。解:,取单层链示,绕组展开图如下:6-9 有一双层绕组,Z=24,2p=4,a=2,。试绘出:(1)绕组的槽电动势星形图并分相;(2)画出其叠绕组A相展开图。解:(1)槽电动势星形图如右:(2)画出其叠绕组A相展开图如下 :6.10一台两极汽轮发电机,频率为,定子槽数为槽,每槽内有两根有效导体,接法,空载线电压为。试求基波磁通量。解 6-11 一台三相同步发电机,f=50HZ ,nN =1500r/min,定子采用双层短距分布绕组:q=3,每相串联匝数N=108,Y接法,每极磁通量1=1.01510-2Wb,3=0.6610-3Wb,5=0.2410-3Wb, 7=1.01510-4Wb,试求:(1)电机的极对数;(2)定子槽数;(3)绕组系数kN1、kN3、kN5、kN7;(4)相电动势E1、E3、E5、E7及合成相电动势E和线电动势El。解:(1)电机的极对数 ;(2)定子槽数 ;(3)绕组系数 (4)电动势 第7章7.1为什么说交流绕组产生的磁动势既是时间的函数,又是空间的函数,试以三相合成磁动势的基波来说明。答 同步电机的定子绕组和异步电机的定、转子绕组均为交流绕组,而它们中的电流则是随时间变化的交流电,因此,交流绕组的磁动势及气隙磁通既是时间函数,同时空间位置不同,磁动势和气隙磁通密度分布不同,所以又是空间的函数。三相合成磁动势的基波为:从表达式上可以看出,三相合成磁动势的基波为在空间按正弦分布,且随时间以同步转速旋转的磁动势,因此它既是时间的函数,又是空间的函数。7.2脉振磁动势和旋转磁动势各有哪些基本特性?产生脉振磁动势,圆形旋转磁动势和椭圆形旋转磁动势的条件有什么不同?答 1) 脉振磁动势的基本特点为:(1) 空间位置不变,在电机的气隙空间按阶梯形波分布,幅值随时间以电流的频率按正弦规律变化。(2) 单相绕组的脉振磁动势可分解为基波和一系列奇次谐波。每次波的频率相同都等于电流的频率,其中,磁动势基波的幅值为:次谐幅值为 (3) 基波的极对数就是电机的极对数,而次谐波的极对数。(4) 各次波都有一个波幅在相绕组的轴线上,其正负由绕组系数决定。2)旋转磁动势的基本特点为:(1) 对称的三相绕组内通有对称的三相电流时,三相绕组合成磁动势的基波是一个在空间按正弦分布、幅值恒定的圆形旋转磁动势,其幅值为每相基波脉振磁动势最大幅值的3/2倍, 即 (2) 合成磁动势的转速, 即同步转速 (3) 合成磁动势的转向取决于三相电流的相序及三相绕组在空间的排列。合成磁动势是从电流超前相的绕组轴线转向电流滞后相的绕组轴线。改变电流相序即可改变旋转磁动势转向。(4) 旋转磁动势的瞬时位置视相绕组电流大小而定,当某相电流达到正最大值时,合成磁动势的正幅值就与该相绕组轴线重合。产生脉振磁动势,圆形旋转磁动势和椭圆形旋转磁动势的条件为:当和中有一个为零时,合成磁动势为圆型旋转磁动势当时,合成磁动势为椭圆形旋转磁动势当时,合成磁动势为脉振磁动势7.3一台三角形连接的定子绕组,接到对称的三相电源上,当绕组内有一相断线时,将产生什么性质的磁动势?答 设C相绕组断线,则,A,B两相电流为。将坐标原点取在A相绕组轴线上,则有因此,合成磁动势为椭圆形旋转磁动势,其转向为ABCA。时的向量图如图所示。 7.4把一台三相交流电机定子绕组的三个首端和末端分别连在一起,通以交流电流,合成磁动势基波是多少?如将三相绕组依次串联起来后通以交流电流,合成磁动势基波又是多少?为什么?答 把一台三相交流电机定子绕组的三个首端和末端分别连在一起,通以交流电流,相当于并联,则三个绕组内流过相位相同的交流电流,空间相差,矢量合成为零,所以合成磁动势基波为零;如将三相绕组依次串联起来后通以交流电流,相当于串接,绕组内流过的电流仍然是空间相差,但是同相位,所以矢量合成后得到的磁动势基波为零。7.5把三相感应电动机接到电源的三个接线头对调两根后,电动机的转向是否会改变?为什么?答 电动机的转向会发生改变。因为磁场的转向将会因为电源接线头的对调而发生变化,旋转磁动势的转向将会与原先的相反。7.6试述三相绕组产生的高次谐波磁动势的极对数、转向、转速和幅值。多少?答 三相绕组产生的高次谐波磁动势的(1)极对数(2)转速 (3)转向,当,则为反向(即和基波磁动势反向相反),则为正向(即和基波磁动势反向相同)(4) 幅值它们所建立的磁场在定子绕组内的感应电动势的频率为 即绕组谐波磁场在绕组自身的感应电动势的频率与产生绕组谐波磁动势的基波电流频率相同,因此它可与基波电动势相量相加。7.7短距系数和分布系数的物理意义是什么?为什么现代交流电机一般采用短距、分布绕组?答 短距系数物理意义是:短距线匝电动势(为构成线匝的两导体有效边电动势相量和)与整距线匝电动势(为构成线匝的两导体有效边电动势代数和)的比值,即: 分布系数物理意义是:线圈组各线圈分布在若干个槽时电动势相量和和对各线圈都集中在同一槽时电动势代数和的比值,即:因为短距和分布绕组能削弱或消除高次谐波电动势。7.8一台的三相电机,通以的三相交流电流,若保持电流的有效值不变,试分析其基波磁动势的幅值大小,极对数、转速和转向将如何变化?答 三相合成磁动势基波的幅值为:因为电流的有效值不变,所以磁动势的幅值大小不变,又因为而频率增大到60HZ,所以转速增加1.2倍,又因为相序不变,所以转向不变,极对数也不变。7.9一台两相交流电机的定子绕组在空间上相差90电角度,若匝数相等,通入怎样的电流形成圆形旋转磁场?通入什么样的电流形成脉振磁场?若两相匝数不等,通入什么样的电流形成圆形旋转磁场?通入什么样的电流形成脉动磁场?答 (1)绕组中通入在时间上互差90电角度的两相对称电流可以形成圆形旋转磁场(2)通入相同相位的电流会形成脉振磁场(3)若匝数不相等,则当绕组中通入幅值大小不相等但在时间上互差90电角度的两相对称电流以保证 和中有一个为零时,可以形成圆形旋转磁场,同理,通入相同相位但幅值大小不相等的电流会形成脉振磁场。7-10一台三相四极感应电动机,PN=132kW,UN=380V,IN=235A,定子绕组采用三角形连接,双层叠绕组,槽数Z=72,y1=15,每槽导体数为72,a=4,试求:(1)脉振磁动势基波和3、5、7等次谐波的振幅,并写出各相基波脉振磁动势的表达式;(2) 算三相合成磁动势基波及5、7次谐波的幅值,写出它们的表达式,并说明各次谐波的转向、极对数和转速;(3) 分析基波和5、7次谐波的绕组系数值,说明采用短距和分布绕组对磁动势波形有什么影响。解:(1)额定相电流 , 设三相电流对称,则各相基波脉振磁动势的表达式:(2),正转,反转,正转,由计算可知,基波绕组系数值远大于5、7次谐波的绕组系数值,说明采用短距和分布绕组对基波磁动势幅值影响不大,而对5、7次谐波磁动势幅值大大减小,使电机磁动势波形近似为正弦波。7.11一台三相二极汽轮发电机,接法,(滞后),槽数,试求额定电流时:(1)相绕组磁动势的基波幅值及瞬时值表达式;(2)三相合成磁动势的基波幅值及瞬时值表达式;(3)画出A相电流为最大值时的三相磁动势空间矢量及其合成磁动势空间矢量图。解 (1)相绕组磁动势的基波幅值:相绕组磁动势的瞬时值表达式(2)三相合成磁动势的基波幅值:三相合成磁动势的瞬时值表达式:(3)A相电流为最大值时的磁动势空间矢量图(时) 7.12一台三相交流电机,定子绕组为单层,接法,若通以三相不对称电流:,试写出三相合成磁动势基波表达式,并分析该磁动势的转向。解,相绕组磁动势的基波幅值 磁动势的转向分析如下: 7-13电枢绕组若为两相绕组,匝数相同,但空间相距120电角度,A相流入,问:(1)若,合成磁动势的性质是什么样的?画出磁动势向量图,并标出正、反转磁动势分量;(2)若要产生圆形旋转磁动势,且其转向为从+A轴经120到+B轴的方向,电流iB应是怎样的,写出瞬时值表达式(可从磁动势向量图上分析)。解:(1)合成磁动势(基波)为椭圆旋转磁动势。当时,在+A轴,各自从+B轴倒退120电角度。磁动势向量图如下图1所示。(2)若要产生圆形旋转磁动势,且其转向为从+A轴经120到+B轴的方向,电流iB应是:,磁动势向量图如下图2所示。 图1 图2第三篇异 步 电 机 第8章8.1为什么感应电动机的转速一定低于同步速,而感应发电机的转速则一定高于同步转速?如果没有外力帮助,转子转速能够达到同步速吗?答 因为异步电动机的转向与定子旋转磁场的转向相同,只有(异步电动机),即转子绕组与定子旋转磁场之间有相对运动,转子绕组才能感应电动势和电流,从而产生电磁转矩。若转速上升到,则转子绕组与定子旋转磁场同速、同向旋转,两者相对静止,转子绕组就不感应电动势和电流,也就不产生电磁转矩,电动机就不转了。而感应发电机的转子用原动机拖动进行工作,进行机电能量的转换,转速只有高于同步转速,才能向外送电。如果没有外力的帮助,转子转速不能达到同步转速。8.2简述异步电机的结构。如果气隙过大,会带来怎样不利的后果?答 异步电机主要是由定子、转子两大部分组成,定、转子中间是空气隙,此外,还有端盖、轴承、机座、风扇等部件。如果气隙过大,会造成产生同样大小的主磁场时所需要的励磁电流的增大,由于励磁电流是无功电流,所以会降低电机的功率因数,减少电机的效率。8.3 感应电动机额定电压、额定电流,额定功率的定义是什么?答 额定电压是指额定运行状态下加在定子绕组上的线电压,单位为V;额定电流是指电动机在定子绕组上加额定电压、轴上输出额定功率时,定子绕组中的线电流,单位为A;额定功率是指电动机在额定运行时轴上输出的机械功率,单位是kw。8.4绕线转子感应电机,如果定子绕组短路,在转子边接上电源,旋转磁场相对转子顺时针方向旋转问此时转子会旋转吗?转向又如何?答 会旋转。因为旋转磁场相对转子顺时针方向旋转时,根据电磁感应,在定子侧,会产生转矩企图带动定子旋转,但是定子不能动,则反作用于转子,使转子以转速旋转,转向为逆时针。8.5 一台三相感应电动机,,.试问:(1) 电动机的极数是多少?(2) 额定负载下的转差率s是多少?(3) 额定负载下的效率是多少? 解:(1)电动机的极数;(2)额定负载下的转差率(3)额定负载下的效率第9章9.1 过载能力 ,:机数据为:额定电压,组均为三相,到满载气骗转子静止与转动时,转子边的电量和参数有何变化?答 当转子转动时,转子电流的有效值为转子电流的频率相应的转子绕组中的电动势为 ,转子漏抗为,和静止时相比,转子转动时的参数和转差率成正比。9.2 感应电动机转速变化时,为什么定、转子磁势之间没有相对运动?答 设定子旋转磁动势相对于定子绕组的转速为,因为转子旋转磁动势相对于转子绕组的转速为。由于转子本身相对于定子绕组有一转速n,为此站在定子绕组上看转子旋转磁动势的转速为。而,所以,感应电动机转速变化时,定、转子磁势之间没有相对运动。9.3 当感应电机在发电及制动状态运行时,定、转子磁势之间也没有相对运动,试证明之答 设定子旋转磁动势相对于定子绕组的转速为,因为转子旋转磁动势相对于转子绕组的转速为。由于转子本身相对于定子绕组有一转速,为此站在定子绕组上看转子旋转磁动势的转速为。而,该式不论转差率为何值时均成立。只不过当感应电机在发电状态运行时时,为负,的转向与定子旋转磁动势的转向相反;当感应电机在制动状态

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论