




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线重庆市九龙坡区2017届高三数学3月复习试题一、选择题:本大题共10小题,每小题5分,共50分。1.若为实数且,则( ) A B C D2、下列函数为奇函数的是( )A B C D 3、 =( ) A. B. C. D.4、二项式的展开式中的系数为15,则( )A4 B5 C6 D75、设是等差数列. 下列结论中正确的是( )A若,则 B若,则 C若,则 D若,则6、设,是有限集,定义,其中表示有限集A中的元素个数,命题:对任意有限集,“”是“ ”的充分必要条件;命题:对任意有限集,( ) A. 命题和命题都成立 B. 命题和命题都不成立 C. 命题成立,命题不成立 D. 命题不成立,命题成立 7、设为所在平面内一点,则( )(A) (B) (C) (D) 8、已知直线l:x+ay-1=0(aR)是圆C:的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=()A、2 B、 C、6 D、9、如果函数在区间上单调递减,则mn的最大值为( )(A)16 (B)18 (C)25 (D)10、将离心率为的双曲线的实半轴长和虚半轴长同时增加个单位长度,得到离心率为的双曲线,则( ) A对任意的, B当时,;当时,C对任意的, D当时,;当时,二、填空题:本大题共5小题,每小题5分,共25分。11、设a,b都是不等于1的正数,则“”是“”的 12、曲线 与直线 所围成的封闭图形的面积为 .13、在 的展开式中,的系数为 .14、在等腰梯形 中,已知 ,动点 和 分别在线段 和 上,且, 则的最小值为 .15、设曲线在点(0,1)处的切线与曲线上点处的切线垂直,则的坐标为 三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。16、设.()求的单调区间;()在锐角中,角的对边分别为,若,求面积的最大值.17、已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.()求第一次检测出的是次品且第二次检测出的是正品的概率;()已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).18、如图,在三棱柱-中,在底面的射影为的中点,为的中点.(1)证明:D平面;(2)求二面角-BD-的平面角的余弦值.19、已知函数,其中.(I)讨论的单调性;(II)设曲线与轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有;(III)若关于的方程有两个正实根,求证: 20、已知椭圆()的半焦距为,原点到经过两点,的直线的距离为(I)求椭圆的离心率;(II)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程21、已知数列与满足,.(1)若,且,求数列的通项公式;(2)设的第项是最大项,即(),求证:数列的第项是最大项;(3)设,(),求的取值范围,使得有最大值与最小值,且.数 学 试 卷 答 案一、选择题序号12345678910答案BDDCCAACBD二、填空题11、充要条件 12、 13、 14、 15、3、 解答题16、解析:(I)由题意知 由 可得由 可得所以函数 的单调递增区间是 ;单调递减区间是17 故的分布列为.18、解析:(1)根据条件首先证得平面,再证明,即可得证;(2)作,且,可证明为二面角的平面角,再由余弦定理即可求得,从而求解.试题解析:(1)设为的中点,由题意得平面,故平面,由,分别,的中点,得且,从而,四边形为平行四边形,故,又平面,平面;(2)作,且,连结,由,得,由,得,由,得,因此为二面角的平面角,由,得,由余弦定理得,.19(2)当为偶数时,当,即时,函数单调递增;当,即时,函数单调递减.所以,在上单调递增,在上单调递减.(II)证明:设点的坐标为,则,曲线在点处的切线方程为,即,令,即,则由于在上单调递减,故在上单调递减,又因为,所以当时,当时,所以在内单调递增,在内单调递减,所以对任意的正实数都有,即对任意的正实数,都有.(III)证明:不妨设,由(II)知,设方程的根为,可得,当时,在上单调递减,又由(II)知可得.类似的,设曲线在原点处的切线方程为,可得,当,即对任意,设方程的根为,可得,因为在上单调递增,且,因此.由此可得.因为,所以,故,所以.20、解析:(I)过点,的直线方程为,则原点到直线的距离,由,得,解得离心率.(II)解法一:由(I)知,椭圆的方程为. (1)依题意,圆心是线段的中点,且.易知,不与轴垂直,设其直线方程为,代入(1)得设则由,得解得.从而.于是.由,得,解得.故椭圆的方程为.解法二:由(I)知,椭圆的方程为. (2)21、【解析】(1)由,得,所以是首项为,公差为的等差数列,故的通项公式为,.证明:(2)由,得.所以为常数列,即.因为,所以,即.故的第项是最大项.解:(3)因为,所以,当时, .当时,符合上式.所以.因为,所以,.当时,由指数函数的单调性知,不存在最大、最小值;当时,的最大值为,最小值为,而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025养殖租赁合同(动物饲养)
- 2025租房合同全新示范样本
- 《财务支出与收入管理》课件
- 《能量转换》课件
- 2025设备租赁合同简版
- 《企业品牌形象构建与维护》课件
- 2025租房合同范本与重要条款
- 2025泉州市级专项储备粮油采购合同示范文本
- 白石销售合同协议
- 耕田承包合同协议
- CJT156-2001 沟槽式管接头
- CJJT146-2011 城镇燃气报警控制系统技术规程
- 臭氧在骨科疾病治疗中的应用
- 修补外墙防水合同
- 20万吨有机肥项目可行性研究报告
- 幼小衔接 每日一练
- 电缆敷设施工质量控制案例分享
- 骨与关节化脓性感染
- 教科版五年级下册科学第三单元《环境与我们》单元测试卷(含答案)
- 教师数字素养及其培育路径研究基于欧盟七个教师数字素养框架的比较分析
- 《变电站二次系统数字化设计编码规范》
评论
0/150
提交评论