




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一岗双责落实还不到位。受事务性工作影响,对分管单位一岗双责常常落实在安排部署上、口头要求上,实际督导、检查的少,指导、推进、检查还不到位。专题07 导数及其应用 文【考向解读】 高考将以导数的几何意义为背景,重点考查运算及数形结合能力,导数的综合运用涉及的知识面广,综合的知识点多,形式灵活,是每年的必考内容,经常以压轴题的形式出现预测2017年高考仍将利用导数研究方程的根、函数的零点问题、含参数的不等式恒成立、能成立、实际问题的最值等形式考查【命题热点突破一】导数的几何意义例1、【2016高考新课标2理数】若直线是曲线的切线,也是曲线的切线,则 【答案】【解析】【感悟提升】函数图像上某点处的切线斜率就是函数在该点处的导数值求曲线上的点到直线的距离的最值的基本方法是“平行切线法”,即作出与直线平行的曲线的切线,则这条切线到已知直线的距离即为曲线上的点到直线的距离的最值,结合图形可以判断是最大值还是最小值【变式探究】 函数f(x)exsin x的图像在点(0,f(0)处的切线的倾斜角为()A. B.C. D.【答案】C【解析】因为f(x)exsin xexcos x,所以f(0)1,即曲线yf(x)在点(0,f(0)处的切线的斜率为1,所以在点(0,f(0)处的切线的倾斜角为.【命题热点突破二】函数的单调性 与最值例2、【2016高考山东理数】(本小题满分13分)已知.(I)讨论的单调性;(II)当时,证明对于任意的成立.【答案】()见解析;()见解析【解析】(1),当或时,单调递增;当时,单调递减;(2)时,在内,单调递增;(3)时,当或时,单调递增;当时,单调递减.综上所述,当时,函数在内单调递增,在内单调递减;当时,在内单调递增,在内单调递减,在 内单调递增;当时,在内单调递增;当,在内单调递增,在内单调递减,在内单调递增.【感悟提升】确定函数的单调区间要特别注意函数的定义域,不要从导数的定义域确定函数的单调区间,在某些情况下函数导数的定义域与原函数的定义域不同【变式探究】 (1)已知函数f(x)ln(xa)ax,求函数f(x)的单调区间和极值(2)已知函数f(x)(ax2)ex在x1处取得极值,求函数f(x)在m,m1上的最小值【解析】 f(x),f(x)随x的变化情况如下:x(,1)1(1,)f(x)0f(x)减e增所以函数f(x)在(,1)上单调递减,在(1,)上单调递增.当m1时,f(x)在m,m1上单调递增,f(x)minf(m)(m2)em.当0m1时,m1m1,f(x)在m,1上单调递减,在1,m1上单调递增,f(x)minf(1)e.当m0时,m11,f(x)在m,m1上单调递减,f(x)minf(m1)(m1)em1.综上,f(x)在m,m1上的最小值f(x)min【感悟提升】利用导数求函数极值的一般步骤:对可导函数求出导数等于零的点,然后判断在导数等于零的点两侧导数的符号,先确定其是否为极值点,若是极值点,则再确定是极大值点还是极小值点【命题热点突破三】函数的单调性与不等式例3、已知f(x)xexax2x,aR.(1)当a时,求函数f(x)的单调区间;(2)若当x0时,恒有f(x)f(x)(4a1)x成立,求实数a的取值范围(2)设g(x)f(x)f(x)(4a1)xexax22ax1,则由题可知,当x0时,g(x)0恒成立.g(x)ex2ax2au(x),u(x)ex2a,当x0时,ex1.当2a1,即a时,u(x)0,g(x)ex2ax2a在0,)上单调递增,所以g(x)g(0)12a0,所以g(x)在0,)上单调递增,所以g(x)g(0)0恒成立.当2a1,即a时,令u(x)0,得xln 2a.当x0,ln 2a)时,u(x)0,g(x)ex2ax2a在0,ln 2a)上单调递减,所以当x0,ln 2a)时,g(x)ex2ax2ag(0)12a0,则g(x)在0,ln 2a)上单调递减,于是g(x)g(0)0,这与g(x)0恒成立矛盾.综上可得,实数a的取值范围是.【感悟提升】对于求不等式恒成立时的参数范围问题,一般是将参数分离出来,使不等号一边是参数,另一边是一个区间上具体的函数,这样便于解决问题但要注意的是分离参数不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,则不要分离参数【变式探究】已知函数f(x)其中e2.718 28是自然对数的底数,mR.(1)若函数f(x)为(0,1)上的单调增函数,求m的取值范围;(2)对任意的1ab,求证:.(2)证明:依题意知,当x1,)时,f(x)ln xx2,所以11.记g(x)xln x1(x1,),因为g(x)10,所以g(x)在1,)上单调递增,则g(x)g(1)0,从而ln xx1(x1,). (*)又因为1a1,由(*)式,知ln1,即1,于是,11.故当1ab时,不等式成立. 【感悟提升】用导数证明不等式问题,实质上是研究函数在一个区间上的恒成立问题,因此,证明的基本思路就是构造函数,通过导数的方法研究这个函数的单调性、极值和特殊点的函数值,再根据函数的性质推断不等式成立解题时注意技巧的总结:树立服务意识,所谓“服务意识”是指利用给定函数的某些性质,如函数的单调性、最值等,服务于要证明的不等式;强化变形技巧,所谓“变形技巧”是指对于给定的不等式无法直接证明,可考虑对不等式进行必要的等价变形后,再去证明,例如采用两边取对数(指数)、移项、通分等方法【命题热点突破四】定积分例4、(1) 曲线yx2与直线yx所围成的封闭图形的面积为_(2) 如图71所示,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为_图71【答案】(1)(2)1.2【解析】 【感悟提升】定积分的应用主要是求曲边形的面积,其方法是根据定积分的几何意义把曲边形的面积表示为函数的定积分【变式探究】一列火车在平直的铁轨上行驶,遇到紧急情况时,火车紧急刹车,此时火车以速度v(t)5t(t的单位:s,v的单位:m/s)减速至停止,在此期间火车继续行驶的距离是()A.55ln 10 m B.55ln 11 mC.(1255ln 7)m D.(1255ln 6)m【答案】B【解析】令5t0,得t10(舍去负值),即经过10 s火车停止,行驶的距离sdt|55ln 11(m),即紧急刹车后火车继续行驶的距离是55ln 11 m. 【高考真题解读】1. 【2016高考山东理数】若函数的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称具有T性质.下列函数中具有T性质的是( )(A)(B)(C)(D)【答案】A【解析】当时,所以在函数图象存在两点,使条件成立,故A正确;函数的导数值均非负,不符合题意,故选A。2.【2016年高考四川理数】设直线l1,l2分别是函数f(x)= 图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则PAB的面积的取值范围是( )(A)(0,1) (B)(0,2) (C)(0,+) (D)(1,+)【答案】A【解析】 3.【2016高考新课标2理数】若直线是曲线的切线,也是曲线的切线,则 【答案】【解析】对函数求导得,对求导得,设直线与曲线相切于点,与曲线相切于点,则,由点在切线上得,由点在切线上得,这两条直线表示同一条直线,所以,解得.4.【2016高考新课标3理数】已知为偶函数,当时,则曲线在点处的切线方程是_【答案】【解析】 5.【2016高考新课标1卷】(本小题满分12分)已知函数有两个零点.(I)求a的取值范围;(II)设x1,x2是的两个零点,证明:.【答案】【解析】()(i)设,则,只有一个零点(ii)设,则当时,;当时,所以在上单调递减,在上单调递增又,取满足且,则,故存在两个零点综上,的取值范围为()不妨设,由()知,在上单调递减,所以等价于,即由于,而,所以设,则所以当时,而,故当时,从而,故6.【2016高考山东理数】(本小题满分13分)已知.(I)讨论的单调性;(II)当时,证明对于任意的成立.【答案】()见解析;()见解析【解析】(1),当或时,单调递增;当时,单调递减;(2)时,在内,单调递增;(3)时,当或时,单调递增;当时,单调递减.综上所述,当时,函数在内单调递增,在内单调递减;当时,在内单调递增,在内单调递减,在 内单调递增;当时,在内单调递增;当,在内单调递增,在内单调递减,在内单调递增. 7.【2016高考江苏卷】(本小题满分16分)已知函数.设.(1)求方程的根;(2)若对任意,不等式恒成立,求实数的最大值;(3)若,函数有且只有1个零点,求的值。【答案】(1)0 4(2)1【解析】(2)因为函数只有1个零点,而,所以0是函数的唯一零点.因为,又由知,所以有唯一解.令,则,从而对任意,所以是上的单调增函数,于是当,;当时,.因而函数在上是单调减函数,在上是单调增函数.下证.若,则,于是,又,且函数在以和为端点的闭区间上的图象不间断,所以在和之间存在的零点,记为. 因为,所以,又,所以与“0是函数的唯一零点”矛盾.若,同理可得,在和之间存在的非0的零点,矛盾.因此,.于是,故,所以.8.【2016高考天津理数】(本小题满分14分)设函数,,其中(I)求的单调区间;(II) 若存在极值点,且,其中,求证:;()设,函数,求证:在区间上的最大值不小于.【答案】()详见解析()详见解析()详见解析【解析】(2)当时,令,解得,或.当变化时,的变化情况如下表:00单调递增极大值单调递减极小值单调递增所以的单调递减区间为,单调递增区间为,.又,且,由题意及()知,存在唯一实数满足 ,且,因此,所以.()证明:设在区间上的最大值为,表示两数的最大值.下面分三种情况讨论:(1)当时,由()知,在区间上单调递减,所以在区间上的取值范围为,因此,所以.(2)当时,由()和()知,所以在区间上的取值范围为,因此. 9.【2016高考新课标3理数】设函数,其中,记的最大值为()求;()求;()证明【答案】();();()见解析【解析】(). ()当时,.因此. 当时,将变形为令,则是在上的最大值,且当时,取得极小值,极小值为令,解得(舍去),()由()得.当时,.当时,所以.当时,所以. 10.【2016高考浙江理数】(本小题15分)已知,函数F(x)=min2|x1|,x22ax+4a2,其中minp,q= (I)求使得等式F(x)=x22ax+4a2成立的x的取值范围;(II)(i)求F(x)的最小值m(a);(ii)求F(x)在区间0,6上的最大值M(a).【答案】(I);(II)(i);(ii)【解析】 11.【2016高考新课标2理数】()讨论函数的单调性,并证明当时,; ()证明:当时,函数有最小值.设的最小值为,求函数的值域【答案】()详见解析;().【解析】 于是,由单调递增所以,由得因为单调递增,对任意存在唯一的使得所以的值域是综上,当时,有,的值域是12.【2016年高考北京理数】(本小题13分)设函数,曲线在点处的切线方程为,(1)求,的值;(2)求的单调区间.【答案】(),;(2)的单调递增区间为.【解析】 1.【2015高考江苏,19】 已知函数.(1)试讨论的单调性;(2)若(实数c是a与无关的常数),当函数有三个不同的零点时,a的取值范围恰好是,求c的值.【答案】(1)当时, 在上单调递增;当时, 在,上单调递增,在上单调递减;当时, 在,上单调递增,在上单调递减(2)(2)由(1)知,函数的两个极值为,则函数有三个零点等价于,从而或又,所以当时,或当时,设,因为函数有三个零点时,的取值范围恰好是,则在上,且在上均恒成立, 2.【2015高考四川,理21】已知函数,其中.(1)设是的导函数,评论的单调性; (2)证明:存在,使得在区间内恒成立,且在内有唯一解.【答案】(1)当时,在区间上单调递增, 在区间上单调递减;当时,在区间上单调递增.(2)详见解析.【解析】(1)由已知,函数的定义域为,所以.当时,在区间上单调递增, 在区间上单调递减;当时,在区间上单调递增.(2)由,解得.令.则,.故存在,使得.由(1)知,函数在区间上单调递增.故当时,有,从而;当时,有,从而;所以,当时,.综上所述,存在,使得在区间内恒成立,且在内有唯一解.3.【2015高考广东,理19】设,函数 (1) 求的单调区间 ; (2) 证明:在上仅有一个零点; (3) 若曲线在点处的切线与轴平行,且在点处的切线与直线平行(是坐标原点),证明:【答案】(1);(2)见解析;(3)见解析将x0=1代入y=f(x)得y0=,10分令;g(m)=em(m+1)g(m)=em(m+1),则g(m)=em1,由g(m)=0得m=0当m(0,+)时,g(m)0当m(,0)时,g(m)0g(m)的最小值为g(0)=012分g(m)=em(m+1)0emm+1em(m+1)2(m+1)3即:m14分4.【2015高考新课标2,理12】设函数是奇函数的导函数,当时,则使得成立的的取值范围是( )A BC D【答案】A【解析】 5.【2015高考新课标1,理12】设函数=,其中a1,若存在唯一的整数,使得0,则的取值范围是( )(A)-,1) (B)-,) (C),) (D),1)【答案】D【解析】设=,由题知存在唯一的整数,使得在直线的下方.因为,所以当时,0,当时,0,所以当时,=,当时,=-1,直线恒过(1,0)斜率且,故,且,解得1,故选D.6.【2015高考新课标2,理21】 设函数()证明:在单调递减,在单调递增;()若对于任意,都有,求的取值范围【答案】()详见解析;()()由()知,对任意的,在单调递减,在单调递增,故在处取得最小值所以对于任意,的充要条件是:即,设函数,则当时,;当时,故在单调递减,在单调递增又,故当时,当时,即式成立当时,由的单调性,即;当时,即综上,的取值范围是7.【2015江苏高考,17】(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到的距离分别为5千米和40千米,点N到的距离分别为20千米和2.5千米,以所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度股权内部转让与公司人力资源管理制度协议
- 2025年度游戏品牌授权使用代理合同
- 2025年度船舶公司海员劳务协议书-船舶机械维修船员合作协议
- 二零二五年度人工智能知识产权保密与商业秘密保护合同
- 众筹文案合同范本
- 2025年中国圆头抄网市场调查研究报告
- 课间十分钟安全记心中-教案
- 2025春季开学典礼校长讲话:学会学习、学会创新、学会合作、学会表达
- 2025年中国中低碳钢丝输送带网市场调查研究报告
- 2025年中国PP棉填充足球市场调查研究报告
- LY/T 2499-2015野生动物饲养场总体设计规范
- GB/T 24474.1-2020乘运质量测量第1部分:电梯
- 佛教空性与缘起课件
- 民兵组织建设课件
- 腹腔镜下阑尾切除术护理课件
- 《抖音生活服务服务商合作手册》
- 语文教学设计(教案目标)
- 工程造价三级复核
- 皮肤性病学课件:湿疹皮炎
- 绿化养护重点难点分析及解决措施
- 一体化学工服务平台、人事管理系统、科研管理系统建设方案
评论
0/150
提交评论