




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一岗双责落实还不到位。受事务性工作影响,对分管单位一岗双责常常落实在安排部署上、口头要求上,实际督导、检查的少,指导、推进、检查还不到位。2.1.1合情推理 1.了解合情推理的含义,正确理解归纳推理与类比推理.(重点、易混点)2.能用归纳和类比进行简单的推理.(难点)3.了解合情推理在数学发现中的作用.基础初探教材整理1归纳推理和类比推理阅读教材P26P27及P30例3以上内容,完成下列问题.1.归纳推理2.类比推理判断(正确的打“”,错误的打“”)(1)因为三角形的内角和是180(32),四边形的内角和是180(42),所以n边形的内角和是180(n2),使用的是类比推理.()(2)类比推理得到的结论可以作为定理应用.()(3)归纳推理是由个别到一般的推理.()【解析】(1)错误.它符合归纳推理的定义特征,应该为归纳推理.(2)错误.类比推理不一定正确.(3)正确.由个别到一般或由部分到整体的推理都是归纳推理.【答案】(1)(2)(3)教材整理2合情推理阅读教材P26,完成下列问题.1.含义前提为真时,结论可能为真的推理,叫做合情推理.归纳推理和类比推理是数学中常用的合情推理.2.合情推理的过程类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是_(填序号).各棱长相等,同一顶点上的任两条棱的夹角都相等;各个面都是全等的正三角形,相邻两个面所成的二面角都相等;各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.【解析】正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故都对.【答案】质疑手记预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:小组合作型归纳推理(1)在数列an中,a11,an1,则a2 017等于()A.2B.C.2D.1(2)根据图211中线段的排列规则,试猜想第8个图形中线段的条数为_. 【导学号:37820008】图211【解析】(1)a11,a2,a32,a41,数列an是周期为3的数列,2 01767231,a2 017a11.(2)分别求出前4个图形中线段的数目,发现规律,得出猜想,图形到中线段的条数分别为1,5,13,29,因为1223,5233,13243,29253,因此可猜想第8个图形中线段的条数应为2813509.【答案】(1)D(2)5091.由已知数式进行归纳推理的方法(1)要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律.(2)要特别注意所给几个等式(或不等式)中结构形式的特征.(3)提炼出等式(或不等式)的综合特点.(4)运用归纳推理得出一般结论.2.归纳推理在图形中的应用策略通过一组平面或空间图形的变化规律,研究其一般性结论,通常需形状问题数字化,展现数字之间的规律、特征,然后进行归纳推理.解答该类问题的一般策略是: 再练一题1.(1)有两种花色的正六边形地面砖,按图212的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是()图212A.26 B.31C.32D.36(2)把1,3,6,10,15,21,这些数叫做三角形数,这是因为个数等于这些数目的点可以分别排成一个正三角形(如图213),试求第七个三角形数是_.图213【解析】(1)法一:有菱形纹的正六边形个数如下表:图案123个数61116由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是65(61)31.法二:由图案的排列规律可知,除第一块无纹正六边形需6个有纹正六边形围绕(图案1)外,每增加一块无纹正六边形,只需增加5块菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的菱形纹正六边形),故第六个图案中有菱形纹的正六边形的个数为:65(61)31.故选B.(2)第七个三角形数为123456728.【答案】(1)B(2)28类比推理在几何中的应用如图214所示,在平面上,设ha,hb,hc分别是ABC三条边上的高,P为ABC内任意一点,P到相应三边的距离分别为pa,pb,pc,可以得到结论1.图214证明此结论,通过类比写出在空间中的类似结论,并加以证明.【精彩点拨】三角形类比四面体,三角形的边类比四面体的面,三角形边上的高类比四面体以某一面为底面的高.【自主解答】,同理,.SPBCSPACSPABSABC,1. 类比上述结论得出以下结论:如图所示,在四面体ABCD中,设ha,hb,hc,hd分别是该四面体的四个顶点到对面的距离,P为该四面体内任意一点,P到相应四个面的距离分别为pa,pb,pc,pd,可以得到结论1.证明如下:,同理,.VPBCDVPACDVPABDVPABCVABCD,1.1.一般地,平面图形与空间图形类比如下:平面图形点线边长面积线线角三角形空间图形线面面积体积二面角四面体2.类比推理的一般步骤(1)找出两类事物之间的类似性或一致性;(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.再练一题2.在上例中,若ABC的边长分别为a,b,c,其对角分别为A,B,C,那么由abcos Cccos B可类比四面体的什么性质? 【解】在如图所示的四面体中,S1,S2,S3,S分别表示PAB,PBC,PCA,ABC的面积,依次表示平面PAB,平面PBC,平面PCA与底面ABC所成二面角的大小.猜想SS1cos S2cos S3cos .探究共研型类比推理在其他问题中的应用探究1鲁班发明锯子的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.你认为该过程为归纳推理还是类比推理?【提示】类比推理.探究2在等差数列an中,若a100,则有等式a1a2ana1a2a19n(n19,nN)成立.类比上述性质,相应地,在等比数列bn中,若b91,则成立的等式是什么?【提示】在等差数列an中,由a100,得a1a19a2a18ana20nan1a19n2a100,a1a2ana190,即a1a2ana19a18an1,又a1a19,a2a18,a19nan1,a1a2ana19a18an1a1a2a19n(n19,nN).若a90,同理可得a1a2ana1a2a17n(n17,nN).相应地,在等比数列bn中有:b1b2bnb1b2b17n(n0,b0)具有类似特征的性质,并加以证明.【精彩点拨】【自主解答】类似性质:若M,N为双曲线1(a0,b0)上关于原点对称的两个点,点P是双曲线上任意一点,当直线PM,PN的斜率kPM,kPN都存在时,那么kPM与kPN之积是与点P的位置无关的定值.证明如下:设点M,P的坐标分别为(m,n),(x,y),则N(m,n).因为点M(m,n)是双曲线上的点,所以n2m2b2.同理y2x2b2.则kPMkPN(定值).1.两类事物能进行类比推理的关键是两类对象在某些方面具备相似特征.2.进行类比推理时,首先,找出两类对象之间可以确切表达的相似特征;然后,用一类对象的已知特征去推测另一类对象的特征,从而得到一个猜想.再练一题3.在公比为4的等比数列bn中,若Tn是数列bn的前n项积,则有,也成等比数列,且公比为4100;类比上述结论,相应地,在公差为3的等差数列an中,若Sn是an的前n项和.可类比得到的结论是_. 【导学号:37820009】【解析】因为等差数列an的公差d3,所以(S30S20)(S20S10)(a21a22a30)(a11a12a20)100d300,同理可得:(S40S30)(S30S20)300,所以数列S20S10,S30S20,S40S30是等差数列,且公差为300.即结论为:数列S20S10,S30S20,S40S30也是等差数列,且公差为300.【答案】数列S20S10,S30S20,S40S30也是等差数列,且公差为300构建体系1.我们把1,4,9,16,25,这些数称做正方形数,这是因为个数等于这些数目的点可以分别排成一个正方形(如图215).图215则第n个正方形数是()A.n(n1)B.n(n1)C.n2D.(n1)2【解析】观察前5个正方形数,恰好是序号的平方,所以第n个正方形数应为n2.【答案】C2.如图216所示,着色的三角形的个数依次构成数列an的前4项,则这个数列的一个通项公式为()【导学号:37820010】图216A.an3n1B.an3nC.an3n2nD.an3n12n3【解析】a11,a23,a39,a427,猜想an3n1.【答案】A3.已知扇形的弧长为l,半径为r,类比三角形的面积公式S,可知扇形面积公式为()A.B.C.D.无法确定【解析】扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积公式S.【答案】C4.在平面上,若两个正三角形的边长的比为12,则它们的面积比为14,类似地,在空间中,若两个正四面体的棱长的比为12,则它们的体积比为_.【解析】由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为12,则它们的体积之比为18.【答案】185.已知在数列an中,a1,an1.(1)求a2,a3,a4,a5的值;(2)猜想an.【解】(1)a2,同理a3,a4,a5.(2)由a2,a3,a4,a5,可猜想an.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(三)(建议用时:45分钟)学业达标一、选择题1.(2016郑州高二检测)下列说法正确的是()A.由合情推理得出的结论一定是正确的B.合情推理必须有前提有结论C.合情推理不能猜想D.合情推理得出的结论无法判定正误【解析】合情推理得出的结论不一定正确,故A错;合情推理必须有前提有结论,故B对;合情推理中类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理,可进行猜想,故C错;合情推理得出的结论可以进行判定正误,故D错.【答案】B2.下面使用类比推理恰当的是()A.“若a3b3,则ab”类比推出“若a0b0,则ab”B.“(ab)cacbc”类比推出“(ab)cacbc”C.“(ab)cacbc”类比推出“(c0)”D.“(ab)nanbn”类比推出“(ab)nanbn”【解析】由实数运算的知识易得C项正确.【答案】C3.(2016大连高二检测)用火柴棒摆“金鱼”,如图217所示,图217按照上面的规律,第n个“金鱼”图需要火柴棒的根数为() 【导学号:37820011】A.6n2B.8n2C.6n2D.8n2【解析】从可以看出,从第个图开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n个“金鱼”图需火柴棒的根数为6n2.【答案】C4.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面体各正三角形的()A.一条中线上的点,但不是中心B.一条垂线上的点,但不是垂心C.一条角平分线上的点,但不是内心D.中心【解析】由正四面体的内切球可知,内切球切于四个面的中心.【答案】D5.(2016南昌调研)已知整数对的序列为(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),则第57个数对是()A.(2,10)B.(10,2)C.(3,5)D.(5,3)【解析】由题意,发现所给数对有如下规律:(1,1)的和为2,共1个;(1,2),(2,1)的和为3,共2个;(1,3),(2,2),(3,1)的和为4,共3个;(1,4),(2,3),(3,2),(4,1)的和为5,共4个;(1,5),(2,4),(3,3),(4,2),(5,1)的和为6,共5个.由此可知,当数对中两个数字之和为n时,有n1个数对.易知第57个数对中两数之和为12,且是两数之和为12的数对中的第2个数对,故为(2,10).【答案】A二、填空题6.把正数排列成如图218甲的三角形数阵,然后擦去偶数行中的奇数和奇数行中的偶数,得到如图218乙的三角形数阵,现把图乙中的数按从小到大的顺序排成一列,得到一个数列an,若an2 017,则n_.12 3 45 6 7 8 910 11 12 13 14 15 16甲12 45 7 910 12 14 16乙图218【解析】图乙中第k行有k个数,第k行最后的一个数为k2,前k行共有个数,由44441 936,45452 025知an2 017出现在第45行,第45行第一个数为1 937,第141个数为2 017,所以n411 031.【答案】1 0317.(2016日照高二检测)二维空间中圆的一维测度(周长)l2r,二维测度(面积)Sr2,观察发现Sl;三维空间中球的二维测度(表面积)S4r2,三维测度(体积)Vr3,观察发现VS.已知四维空间中“超球”的三维测度V8r3,猜想其四维测度W_.【解析】因为V8r3,所以W2r4,满足WV.【答案】2r48.已知bn为等比数列,b52,则b1b2b3b929.若an为等差数列,a52,则an的类似结论为_.【解析】结合等差数列的特点,类比等比数列中b1b2b3b929可得,在an中,若a52,则有a1a2a3a929.【答案】a1a2a3a929三、解答题9.已知数列,Sn为其前n项和,计算S1,S2,S3,S4,观察计算结果,并归纳出Sn的公式.【解】S1,S2,S3,S4,由此归纳猜想Sn.10.(2016咸阳高二检测)在平面几何中,研究正三角形内任意一点与三边的关系时,我们有真命题:边长为a的正三角形内任意一点到各边的距离之和是定值a.类比上述命题,请你写出关于正四面体内任意一点与四个面的关系的一个真命题,并给出简要的证明.【解】类比所得的真命题是:棱长为a的正四面体内任意一点到四个面的距离之和是定值a.证明:设M是正四面体PABC内任一点,M到平面ABC,平面PAB,平面PAC,平面PBC的距离分别为d1,d2,d3,d4.由于正四面体四个面的面积相等,故有:VPABCVMABCVMPABVMPACVMPBCSABC(d1d2d3d4),而SABCa2,VPABCa3,故d1d2d3d4a(定值).能力提升1.根据给出的数塔,猜测123 45697等于()【导学号:37820012】19211;1293111;123941 111;1 2349511 111;12 34596111 111;A.1 111 110B.1 111 111C.1 111 112D.1 111 113【解析】由前5个等式知,右边各位数字均为1,位数比前一个等式依次多1位,所以123 456971 111 111,故选B.【答案】B2.已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则2”.若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD中,若BCD的中心为M,四面体内部一点O到四面体各面的距离都相等”,则()A.1B.2C.3D.4【解析】如图,设正四面体的棱长为1,即易知其高AM,此时易知点O即为正四面体内切球的球心,设其半径为r,利用等体积法有4rr,故AOAMMO,故AOOM31.【答案】C3.(2016温州高二检
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仿古木材油漆施工方案
- 组件支架水上施工方案
- 《传递积极力量》课件
- 2025智能解决方案开发合同(标准模板)
- 2025至2031年中国人造牡丹花枝行业投资前景及策略咨询研究报告
- 2025国际货物贸易合同范本下载
- 2025至2030年中国银包五金配件数据监测研究报告
- 2025至2030年中国足球运动急救套装数据监测研究报告
- 2025至2030年中国水曲柳贴面板数据监测研究报告
- 施工方案的计算软件
- 晨光医院救护车驾驶员考试题
- 中国地质大学(北京)《GNSS测量原理及其应用》2022-2023学年第一学期期末试卷
- 护理专业实践报告5000字范文
- 2024年度昌平区养老院食堂餐饮服务承包合同
- 矿业权评估师岗前培训课件
- 二年级家庭教育讲座省公开课获奖课件市赛课比赛一等奖课件
- 矿山生态修复施工方案及技术措施
- GB/T 24008-2024环境影响及相关环境因素的货币价值评估
- 化学计量学与化学分析技术考核试卷
- 2024关于深化产业工人队伍建设改革的建议全文解读课件
- 人教pep版小学英语三年级下册【全册】单元测试卷期中期末复习试卷
评论
0/150
提交评论