初中数学论文:图形的运动与坐标.doc_第1页
初中数学论文:图形的运动与坐标.doc_第2页
初中数学论文:图形的运动与坐标.doc_第3页
初中数学论文:图形的运动与坐标.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

例2如图:abc的顶点坐标如图所示,a(2,3),b(0,0),c(4,0),若a点经过平移到达点d(8,8),问:abc经过怎样平移得到def,并求其它两点的坐标?解:由题意得:abc经过向上平移6个单位,向右平移5个单位得到def。平移后点e,点f的坐标分别为e(6,5), f(10,5)。二 旋转变换1定义:把平面图形f1绕一定点旋转一个角度得到图形f2,则由f1到f2的变换叫旋转变换,其中定点叫旋转中心,定角叫旋转角。旋转是由旋转中心,旋转方向和旋转角度决定的。2性质:旋转前后的图形全等,对应线段相等,对应角相等,对应点到旋转中心的距离相等。对应点与旋转中心连线所成的角度等于旋转的角度。3坐标的变换:因旋转是由旋转中心,旋转方向和旋转角度决定的,这三个要素都具有随意性,所以旋转变换中,点的坐标变化情况要具体问题具体分析。对图形的旋转中心在坐标原点,旋转角度是900,1800,2700,也是有一定规律可循的。若将点a绕坐标原点逆时针旋转900到点b, 若将点a绕坐标原点顺时针或逆时针旋转1800到点b,即中心对称:若将点a绕坐标原点逆时针旋转2700到点b, 例3如图:oab的三个顶点的坐标为,a(0,4), b(-3,0), o(0,0)。(1)求将它绕点o逆时针方向旋转90后各顶点的坐标。(2)求将它绕点o逆时针方向旋转180后各顶点的坐标。(3)求将它绕点o逆时针方向旋转270后各顶点的坐标。解:如图(1)a1(-4,0),b1(0,-3) (2)a2(0,-4),b2(3,0);(3)a3(4,0),b3(0,3);三轴对称变换1定义:如果把一个图形沿着同一平面内的一直线翻折1800,能够与另一个图形重合,那么这两个图形关于这条直线对称。这条直线叫做对称轴。2性质:两个图形关于某条直线对称,那么对称点的连线被对称轴垂直平分,如果他们的对应点的连线或其延长线相交,那么交点必定在对称轴上。3坐标的变换: 例4已知abc的三个顶点的坐标为:a(2,1), b(5,1), c(3,4),(1)求 abc关于y轴的对称图形a1b1c1的三个顶点的坐标。(2)求 abc关于x轴的对称图形a2b2c2的三个顶点的坐标。解:如图:(1)a1b1c1的三个顶点的坐标分别为a1 (-2,1), b1 (-5,1), c1 (-3,4)。(2)a2b2c2的三个顶点的坐标分别为a2 (2,-1), b2 (5,-1), c2(3,-4)。四位似变换 平移变换,旋转变换,轴对称变换都是只改变图形的位置,而图形的形状,大小都不发生改变的合同变换。位似变换只保持图形的形状不发生改变,位置和大小都发生改变的变换。1定义:若两个图形相似且对应点的连线相交于一点,像这样的相似叫做位似。交点叫位似中心2性质:作位似变换可以将图形放大或缩小。3坐标的变换: 因为图形作位似变换,位似中心可以取在图形的外部,内部,边上或顶点处,且位似的图形可以与原图形在同一侧或在异侧,所以坐标变化的规律也比较难找。 现以原点为位似中心,位似图形与原图形在位似中心的同一侧,将图形放大m倍,对应点点a变化到点a,例5已知oab的三个顶点的坐标为:a(2,4), b(6,0), o(0,0),(1)以o为位似中心,缩小到原图形的 的位似图形a1b1c1的三个顶点的坐标;(2)以a为位似中心,缩小到原图形的 的,位似图形a2b2c2的三个顶点的坐标;(3)以b为位似中心,缩小到原图形的 的,位似图形a3b3c3的三个顶点的坐标,解:(1)如图:o1a1b1的三个顶点的坐标分别为o1(0,0)a1 (1,2)b1 (3,0)或o11(0,0)a11 (-1,-2)b11 (-3,0).(2)如图:o2a2b2的三个顶点的坐标分别为o2(1,2)a2 (2,4)b2 (4,2)或o22(3,6)a22 (2,4)b22 (0,6).(3)如图:o3a3b3的三个顶点的坐标分别为o3(3,0)a3 (4,2)b3 (6,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论