ie工业工程-ie案例分析培训教材(ppt 69页)_第1页
ie工业工程-ie案例分析培训教材(ppt 69页)_第2页
ie工业工程-ie案例分析培训教材(ppt 69页)_第3页
ie工业工程-ie案例分析培训教材(ppt 69页)_第4页
ie工业工程-ie案例分析培训教材(ppt 69页)_第5页
已阅读5页,还剩64页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

IE案例分析 王晓光 武汉理工大学机电工程学院 案例三:生产规划 n某电视机厂生产 46厘米( 18吋)和 51厘米( 29吋 )两种彩色电视机 n平均生产能力都是 1台 /小时。给定的生产能力是 每周 80小时 n根据市场预测,下周的最大销售量是 46厘米 70台 , 51厘米 35台 n已知该厂每出售一台 46厘米彩电可获利 250元, 出售一台 51厘米彩电可获利 150元 n试制定生产计划 案例三:生产规划 Max Z=250x1+150x2 n 如果经理只有利润最大这唯一的目标,则用线性规划就 可以解决。 解:设 x1,x2分别为 46厘米彩电和 51厘米彩电的产量,其线 性规划模型为: 案例三:生产规划 n采用软件计算: POM Software Library 案例三:生产规划 n 选择: Linear Programming 案例三:生产规划 n 选择: Linear Programming 案例三:生产规划 n 求解得 n 46厘米彩电 x1=70 n 51厘米彩电 x2=10 n 利润最大 z=19000 案例三:生产规划 n 如果经理认为,企业的利润指标固然重要,但 从企业长远的发展眼光来看,搞好劳资关系, 稳定工作人员的队伍更加重要。因此经理确定 下面四项作为企业的主要目标,并按其重要程 度排列如下: 案例三:生产规划 n P1:第一个目标,避免开工不足,使职工的正 常就业保持稳定。 n P2:第二个目标,当生产任务重时,采用加班 的办法扩大生产能力,但每周加班不能超过 10 小时。 n P3:第三个目标,努力达到预计的销售量。 n P4:第四个目标,尽可能减少加班时间。 案例三:生产规划 目标规划的基本概念 n 在管理工作中,决策者常常遇到一些相互矛盾 的目标,而且在现有的约束条件下,这些目标 不可能到达。还有线性规划得不到最优解的情 况下 n 但总是希望尽可能在现有条件下能接近管理目 标。也就是说使优化的结果与目标的偏差值越 小越好。 n 这就是目标规划的基本概念。 案例三:生产规划 目标的优先级问题 n 在多个目标的决策管理中,决策者并不认为多 个目标同等的重要。当出现相互矛盾的多个目 标时,决策者往往要根据实际情况,运用自己 的判断能力确定各目标的重要性。首先考虑到 达最重要的目标,然后再依次考虑其他的目标 。 案例三:生产规划 目标的优先级问题 n 为了适应这种实际情况,在目标规划中,将目 标按 其重要性分成等级,并按等级的大小赋予 个目标的偏差变量( d+ d-或者 d+或者 d-)以一 定的权重,切使 PjPj+1(式中符号 “”说明 Pj要绝对大于 Pj+1)用这样的方法来保证求解中 首先满足比较重要的目标的实现。 案例三:生产规划 用目标规划来解决这个多目标规划问题 解: 1.确定决策变量 设: x1为每周生产 46厘米彩电的台数 x2为每周生产 51厘米彩电的台数 案例三:生产规划 2确定约束条件 ( 1)生产能力约束 n 给定的生产能力是每周 80小时,且第一个目标是 避免开工不足,当工作任务重时允许加班,所以 生产能力约束可写为: n x1+x2+d1-d1+=80 n 其中, d1- 为开工不足 80小时的负偏差; d1+ 为开工超过 80小时的正偏差。 案例三:生产规划 ( 2)产量约束 n 根据市场预测,下一周的最大销售量是 46厘米彩电 70台, 51厘米彩电 35台,因此两种彩电产量不能超 过最大销售量,故有 n x1+ d2-=70 n x2+ d3-=35 n 其中, d2- 46厘米彩电产量达不到目标的负偏差; d3- 51厘米彩电产量达不到目标的负偏差。 案例三:生产规划 ( 3)加班时间约束 n 经历考虑到工人的工作强度,不允许加班时间超 过 10小时。为表示这个约束条件,可以引进加班 时间超过 10小时的正负偏差,于是有 n d1+ d11- -d11+=10 n 其中, d11+加班时间超过 10小时的正负偏差; d11-加班时间不足 10小时的正负偏差。 案例三:生产规划 3.目标函数中的优先级因子 n 根据设定的目标要求及各目标的重要程度,最 高一级的偏差量必须降到最小程度,然后依照 优先级因子的顺序逐级求最小值。 案例三:生产规划 3.目标函数中的优先级因子 n 对于尽量满足销售要求的第三个目标,由于两 种产品的利润不同,所以尽管他们的优先级因 子相同,但两种产品的销售目标优先权因子应 当有所不同。一般按利润比例的大小赋予利润 大的产品较高的权值,例如 d2-/d3- =250/150=5/3也就是说,赋予利润较小的产品 的负偏差量以较小的权值,其比为 5:3。 案例三:生产规划 3.目标函数中的优先级因子 n 根据所设,目标函数可以写为 软件实现 n 在 inQSB软件的 “Goal Programming” 模块中,建立新问 题。如图所示 案例三:生产规划 修改变量名,输入数据。 案例三:生产规划 ( 4)求非负连续解。点击菜单栏 Solve and Analyze选择 Solve the Problem,得到满意解。 案例三:生产规划 46厘米彩电生产 70台 51厘米彩电生产 20台,产量达不到目标 15台 加班时间为 10小时 ( 4)求非负连续解。点击菜单栏 Solve and Analyze选择 Solve the Problem,得到满意解。 案例三:生产规划 案例三:生产规划 某企业计划生产甲、乙两种产品,这些产品需 要使用两种材料,要在两种不同设备上加工。工 艺资料如下表所示。 产 品 资 料 产 品甲 产 品乙 现 有 资 源 材料 3 0 12(kg) 材料 0 4 16(kg) 设备 A 2 2 12(h) 设备 B 5 3 15(h) 产 品利 润 20 40 案例三:生产规划 企业怎样安排生产计划,尽可能满足下列目标 : 1.力求使利润指标不低于 80元; 2.考虑到市场需求, 、 两种产品的生产量需 保持 1: 1的比例; 3.设备 A既要求充分利用,又尽可能不加班; 4.设备 B必要时可以加班,但加班时间尽可能少; 5.材料不能超用。 案例三:生产规划 n这是一个目标规划问题 n线性规划模型的特征是在满足一组约束条件下, 寻求一个目标的最优解(最大值或最小值)。 n而在现实生活中最优只是相对的,或者说是没有 绝对意义下的最优,只有相对意义下的满意。目 标规划就是解决相对意义下的优化问题。 案例三:生产规划 (一)目标规划数学模型的形式有线性模型、非线性 模型、整数模型、交互作用模型。 (二)一个目标中的两个偏差变量至少一个等于零, 偏差变量向量的叉积等于零,即 dk+dk-=0 。 (三)一般目标规划是将多个目标函数写成一个由偏 差变量构成的函数求最小值,按多个目标的重要性 ,确定优先等级,顺序求最小值。 案例三:生产规划 (四) 按决策者的意愿,事先给定所要达到的目标 值,当期望结果不超过目标值时,目标函数求正偏 差变量最小;当期望结果不低于目标值时,目标函 数求负偏差变量最小;当期望结果恰好等于目标值 时,目标函数求正负偏差变量之和最小。 (五)由目标构成的约束称为目标约束。 案例三:生产规划 (一)目标 Min Z= 解:上式中, pj( j=1, 2)称为目标的优先因子。第一目 标优于第二目标,其含义是按 p1, p2的顺序分别求后面 函数的最小值。 先求的最小值 在此基础上再求最小值 单纯形法 案例三:生产规划 解:设 x1,x2分别为产品甲和产品乙的产量,若不考虑达到其 目标,其线性规划模型为: Min Z=20x1+40x2 案例三:生产规划 确定约束条件: 力求使利润指标不低于 80元约束可写为: 其中, d1- 为利润指标不足 80元的负偏差; d1+ 为利润指标超过 80元的正偏差。 案例三:生产规划 确定约束条件: 考虑到市场需求, 、 两种产品的生产量需保 持 1: 1的比例;约束可写为: 其中, d2- 为两种产品的生产量未保持 1: 1的比例的负偏差; d2+ 为两种产品的生产量未保持 1: 1的比例的正偏差。 案例三:生产规划 确定约束条件: 设备 A既要求充分利用,又尽可能不加班约束可写为 : 其中, d3- 为设备 A利用不足 12小时的负偏差; d3+ 为设备 A利用超过 12小时的正偏差。 案例三:生产规划 确定约束条件: 设备 B必要时可以加班,但加班时间尽可能少: 其中, d4- 为设备 B利用不足 15小时的负偏差; d4+ 为设备 B利用超过 15小时的正偏差。 案例三:生产规划 确定约束条件: 材料不能超用: 其中, d5- 为材料 利用不足 12公斤的负偏差; d6- 为材料 利用不足 16公斤的负偏差。 案例三:生产规划 其目标规划模型为: 1. 力求使利润指标不低于 80 元; 2. 考虑到市场需求, 、 两种产品的生产量需保持 1: 1的比例; 3. 设备 A既要求充分利用, 又尽可能不加班; 4. 设备 B必要时可以加班, 但加班时间尽可能少; 5. 材料不能超用。 软件实现 n 在 inQSB软件的 “Goal Programming” 模块中,建立新问 题。如图所示 案例三:生产规划 n 修改变量名,输入数据 案例三:生产规划 点击菜单栏 Solve and Analyze选择 Solve the Problem ,得到满意解 。 案例三:生产规划 案例三:生产规划 , =32.5, =4.5, G4=4.5。 n 修改变量名,输入数据 案例三:生产规划 点击菜单栏 Solve and Analyze选择 Solve the Problem ,得到满意解 。 案例三:生产规划 案例三:生产规划 , 产品甲、乙生产多少件?材料 利用情况?产品产量比例?设 备利用情况?利润?加班? 软件实现 n 应 用 Excel实现问题解答。 n ( 1)在 Excel表中输入如下数据。 案例三:生产规划 n ( 2)定义公式。 案例三:生产规划 L 2 实际 3 =SUMPRODUCT(B2:K2,B3:K3) 4 =SUMPRODUCT(B2:K2,B4:K4) 5 =SUMPRODUCT(B2:K2,B5:K5) 6 =SUMPRODUCT(B2:K2,B6:K6) 7 =SUMPRODUCT(B2:K2,B7:K7) 8 =SUMPRODUCT(B2:K2,B8:K8) n ( 2)定义公式。 案例三:生产规划 C 10 =D2+F2+G2+H2+I2+K2 n (3)选中总收益橙色框 ,在 “ 工具 ” 菜单中, 选择 “ 规划求解 ” 选项 。弹出 “ 规划求解参数 ” 对话框。该对话框用 来输入所要求解的规划 问题的目标函数、决策 变量和约束条件。 案例三:生产规划 n ( 4)在 “ 选项 ” 栏中勾选下面两个选项。 案例三:生产规划 n ( 5)求解得到结果。 案例三:生产规划 n 某车间经过 8道工序加工相同的 8个零件,每道工 序只有一台加工设备,每道工序时间分别为 22 min, 15 min, 12 min,17 min, 19 min, 21 min, 20 min,15 min, 请分别用顺序移动方式、平行移动 方式、平行顺序移动方式进行生产调度,并针对 三种方式的总加工时间、总设备等待时间、总设 备闲置时间等参数进行比较与分析。 案例四:车间调度 n 设备闲置时间: 设备未使用的时间,一般指开机 运行前的时间总和。反映了设备的利用率。 n 设备等待时间 :设备开机后等待任务的时间,反 映了设备资源的浪费的情况 n 任务等待时间: 所有任务从开始到完成的时间总 和减去所有任务的加工时间就是所有任务总的等 待时间。 案例四:车间调度 n 顺序移动 n 八道工序依次进行,上一道工序做完才开始下一 道工序。零件的移动为批量移动,即只有把八个 零件在上一道工序全部做完后才一起运送到下一 道工序进行生产。这样使得产品生产周期长,设 备闲置时间长。但是运输次数少,设备利用充分 ,管理简单。 案例四:车间调度 n 平行移动 n 八道工序同时进行,一个零件加工完立刻运到下 道工序进行加工,不是批量运送,而是单个运送 。这种方式大大缩短了产品的生产周期,也降低 了设备的闲置时间,但是设备的等待时间却提升 了。同时运输频繁,设备等待时间多而零碎,不 便利用,车间管理烦乱。 案例四:车间调度 n 平行顺序移动 n 介于上述两种方法之间的一种调度方法。它结合 了顺序移动和平行移动的优点。但是单项指标不 一定是三种方法中最佳。 案例四:车间调度 n 顺序移动 n 根据要求作出工序图(甘特图) 案例四:车间调度 案例四:车间调度 n 设备闲置时间: T0=176+296+392+528+680+848+1008=3928 n 设备等待时间: T1=0 n 任务等待时间: T2=11288-8 ( 22+15+12+17+19+21+20+15) =7896 n 顺序移动 n 平行移动 n 根据要求作出工序图(甘特图) 案例四:车间调度 案例四:车间调度 n 设备闲置时间: T0=37+49+66+85+106+126+141=610 n 设备等待时间: T1=510 n 任务等待时间: T2=2958-8 ( 22+15+12+17+19+21+20+15 ) =1232 n 平行移动 n 平行顺序移动 n 当时, 零件按平行移动方式转移; n 当时, 以工序最后一个零件的完工时 间为基准,往前推移 作为零件在 ( ) 工序的开始加工时间然后按顺序移动方 式转移。 案例四:车间调度 n 平行顺序移动 n 根据要求作出工序图(甘特图) 案例四:车间调度 案例四:车间调度 n 设备闲置时间: T0=71+107+124+143+164+192+277=1078 n 设备等待时间: T1=0 n 任务等待时间: T2=3588-8 ( 22+15+12+17+19+21+20+15 ) =1736 n 平行顺序移动 n 平行顺序移动 n 根据要求作出工序图(甘特图) 案例四:车间调度 移动方式 总加工时 间( min ) 总设备 等待时 间 (min) 总设备闲 置时间 (min) 任务等 待时间 (min)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论